The class 1A aldehyde dehydrogenase (ALDH1A) subfamily of genes encode enzymes that function at the apex of the retinoic acid (RA) signalling pathway. We detected aberrant expression of ALDH1A genes, particularly ALDH1A2, in a majority (72%) of primary paediatric T cell acute lymphoblastic leukaemia (T-ALL) specimens. ALDH1A expression was almost exclusive to T-lineage, but not B-lineage, ALL. To determine whether ALDH1A expression may have relevance to T-ALL cell growth and survival, the effect of inhibiting ALDH1A function was measured on a panel of human ALL cell lines. This revealed that T-ALL proliferation had a higher sensitivity to modulation of ALDH1A activity and RA signalling as compared to ALL cell lines of B-lineage. Consistent with these findings, the genes most highly correlated with ALDH1A2 expression were involved in cell proliferation and apoptosis. Evidence that such genes may be targets of regulation via RA signalling initiated by ALDH1A activity was provided by the TNFRSF10B gene, encoding the apoptotic death receptor TNFRSF10B (also termed TRAIL-R2), which negatively correlated with ALDH1A2 and showed elevated transcription following treatment of T-ALL cell lines with the ALDH1A inhibitor citral (3,7-dimethyl-2,6-octadienal). These data indicate that ALDH1A expression is a common event in T-ALL and supports a role for these enzymes in the pathobiology of this disease.

Download full-text PDF

Source
http://dx.doi.org/10.1111/bjh.13120DOI Listing

Publication Analysis

Top Keywords

aldh1a expression
12
cell lines
12
aldh1a
10
aberrant expression
8
aldehyde dehydrogenase
8
dehydrogenase aldh1a
8
aldh1a subfamily
8
subfamily genes
8
acute lymphoblastic
8
lymphoblastic leukaemia
8

Similar Publications

Glioblastoma (GB) is an aggressive malignant central nervous system tumor that is currently incurable. One of the main pitfalls of GB treatment is resistance to the chemotherapeutic standard of care, temozolomide (TMZ). The role of aldehyde dehydrogenases (ALDHs) in the glioma stem cell (GSC) subpopulation has been related to chemoresistance.

View Article and Find Full Text PDF
Article Synopsis
  • Aldehyde dehydrogenases of the 1A subfamily (ALDH1A) are key enzymes that convert retinal into retinoic acid (RA), which is crucial for various bodily functions including development, reproduction, and immune response.* -
  • ALDH1A3, a specific isoform of ALDH1A, plays a significant role in cancers like glioblastoma multiforme and mesothelioma, where its levels are linked to poor patient prognosis due to increased tumor growth and resistance to treatment.* -
  • Recent research is focused on creating selective inhibitors for ALDH1A3 as a cancer therapy and developing specific fluorescent markers for better surgical resection of tumors.*
View Article and Find Full Text PDF

The strategy for treating bladder cancer (BC) depends on whether there is muscle invasion or not, with the latter mostly treated with intravesical therapy, such as with bacillus Calmette-Guérin (BCG). However, BCG treatment is unsuccessful in 70% of patients, who are then subjected to radical cystectomy. Although immune-checkpoint inhibitors have been approved as a second-line therapy for a subset of BC patients, these have failed to meet primary endpoints in clinical trials.

View Article and Find Full Text PDF

Aldehyde dehydrogenase 1A (ALDH1A) isoforms may be a useful target for overcoming chemotherapy resistance in high-grade serous ovarian cancer (HGSOC) and other solid tumor cancers. However, as different cancers express different ALDH1A isoforms, isoform selective inhibitors may have a limited therapeutic scope. Furthermore, resistance to an ALDH1A isoform selective inhibitor could arise via induction of expression of other ALDH1A isoforms.

View Article and Find Full Text PDF

The aldehyde dehydrogenase 1A1 (ALDH1A1) also known as retinal dehydrogenase, is an enzyme normally involved in the cellular metabolism, development and detoxification processes in healthy cells. However, it's also considered a cancer stem cell marker and its high levels of expression in several cancers, including breast, lung, ovarian, and colon cancer have been associated with poor prognosis and resistance to chemotherapy. Given its crucial role in chemotherapy resistance by detoxification of chemotherapeutic drugs, ALDH1A1 has attracted significant research interest as a potential therapeutic target for cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!