Bim contributes to resistance to various standard and novel agents. Here we demonstrate that Bim plays a functional role in bortezomib resistance in multiple myeloma (MM) cells and that targeting Bim by combining histone deacetylase inhibitors (HDACIs) with BH3 mimetics (eg, ABT-737) overcomes bortezomib resistance. BH3-only protein profiling revealed high Bim levels (Bim(hi)) in most MM cell lines and primary CD138(+) MM samples. Whereas short hairpin RNA Bim knockdown conferred bortezomib resistance in Bim(hi) cells, adaptive bortezomib-resistant cells displayed marked Bim downregulation. HDACI upregulated Bim and, when combined with ABT-737, which released Bim from Bcl-2/Bcl-xL, potently killed bortezomib-resistant cells. These events were correlated with Bim-associated autophagy attenuation, whereas Bim knockdown sharply increased autophagy in Bim(hi) cells. In Bim(low) cells, autophagy disruption by chloroquine (CQ) was required for HDACI/ABT-737 to induce Bim expression and lethality. CQ also further enhanced HDACI/ABT-737 lethality in bortezomib-resistant cells. Finally, HDACI failed to diminish autophagy or potentiate ABT-737-induced apoptosis in bim(-/-) mouse embryonic fibroblasts. Thus, Bim deficiency represents a novel mechanism of adaptive bortezomib resistance in MM cells, and Bim-targeting strategies combining HDACIs (which upregulate Bim) and BH3 mimetics (which unleash Bim from antiapoptotic proteins) overcomes such resistance, in part by disabling cytoprotective autophagy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4208284PMC
http://dx.doi.org/10.1182/blood-2014-03-564534DOI Listing

Publication Analysis

Top Keywords

bortezomib resistance
20
bim
13
bortezomib-resistant cells
12
adaptive bortezomib
8
cells
8
bh3 mimetics
8
bim knockdown
8
bimhi cells
8
resistance
7
autophagy
6

Similar Publications

Background: Enolase 1 (ENO1) is a conserved glycolytic enzyme that regulates glycolysis metabolism. However, its role beyond glycolysis in the pathophysiology of multiple myeloma (MM) remains largely elusive. Herein, this study aimed to elucidate the function of ENO1 in MM, particularly its impact on mitophagy under bortezomib-induced apoptosis.

View Article and Find Full Text PDF

Chemotherapy is a potent tool against cancer, but drug resistance remains a major obstacle. To combat this, understanding the molecular mechanisms behind resistance in cancer cells and the protein expression changes driving these mechanisms is crucial. Targeting the Ubiquitin-Proteasome System (UPS) has proven effective in treating multiple myeloma and shows promise for solid tumours.

View Article and Find Full Text PDF

Antiproliferative and Morphological Analysis Triggered by Drugs Contained in the Medicines for Malaria Venture COVID-Box Against Tachyzoites.

Microorganisms

December 2024

Laboratório de Quimioterapia de Protozoários Egler Chiari, Departamento de Parasitologia-ICB, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil.

is a protozoan, and the etiologic agent of toxoplasmosis, a disease that causes high mortality in immunocompromised individuals and newborns. Despite the medical importance of toxoplasmosis, few drugs, which are associated with side effects and parasite resistance, are available for its treatment. Here, we show a screening of molecules present in COVID-Box to discover new hits with anti- activity.

View Article and Find Full Text PDF

Boanmycin overcomes bortezomib resistance by inducing DNA damage and endoplasmic reticulum functional impairment in multiple myeloma.

Biol Direct

January 2025

Department of Hematology, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China.

Background: Multiple myeloma (MM) is a hematological malignancy characterized by uncontrolled proliferation of plasma cells and is currently incurable. Despite advancements in therapeutic strategies, resistance to proteasome inhibitors, particularly bortezomib (BTZ), poses a substantial challenge to disease management. This study aimed to explore the efficacy of boanmycin, a novel antitumor antibiotic, in overcoming resistance to BTZ in MM.

View Article and Find Full Text PDF

Metabolic reprogramming induced by PSMA4 overexpression facilitates bortezomib resistance in multiple myeloma.

Ann Hematol

January 2025

Department of Hematology, Navy Medical Center of PLA, Naval Medical University, No. 338 West Huaihai Road, Changning District, Shanghai, 200052, China.

Multiple myeloma(MM) remains incurable with high relapse and chemoresistance rates. Differentially expressed genes(DEGs) between newly diagnosed myeloma and secondary plasma cell leukemia(sPCL) were subjected to a weighted gene co-expression network analysis(WGCNA). Drug resistant myeloma cell lines were established.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!