AI Article Synopsis

  • The process of acquiring hyperspectral data using a Large Aperture Static Imaging Spectrometer (LASIS) involves several key steps, including interferometer modulation, convolution sampling, and spectrum retrieval.
  • A complex aspect of this process is accurately evaluating the Signal-Noise Ratio (SNR), which the authors addressed by developing a theoretical model that incorporates various factors affecting SNR.
  • The comparison between the simulation results of the SNR using this model and actual measurements showed a close match, with only a 3.58% average deviation, indicating the model's potential applicability for improving LASIS design and SNR evaluations in other imaging spectrometers.

Article Abstract

The process of acquiring hyperspectral data cube of a Large Aperture Static Imaging Spectrometer (LASIS) includes several vital and essential steps, such as interferometer modulation, rectangular convolution sampling by pixels of detector and spectra retrieving. In this process, how to precisely evaluate the Signal-Noise Ratio (SNR) of spectra and how to wholly establish a related evaluation model were both generally very complicated. After a full consideration of the transmission process, utilizing the theory of rectangular convolution sampling and the spectral retrieving method regarding the computation of real part of the discrete Fourier transform of interferogram, formulas of both spectral signal and spectral noise were deduced theoretically, and then a evaluation model regarding the spectral SNR of LASIS was established. By using this model and other design factors of LASIS involving the wavenumber related optical transmittance, the interferometer beam splitter efficiency, the detector quantum efficiency and the main circuit noise, a simulation of spectral SNR was implemented. The simulation result was compared with the measurement result of the SNR of a LASIS instrument. The SNR lines and trends of the two match each other basically in single spectral band. The average deviation between them is proved to be 3.58%. This comparison result demonstrates the feasibility and effectiveness of the evaluation model. This SNR evaluation model consisting of the main technical aspects of typical LASIS instrument from the input spectral radiation to the output spectrum data is possible to be applied widely in practical design and implement of LASIS, as well as may provide valuable reference on SNR calculation and evaluation for other imaging spectrometers.

Download full-text PDF

Source

Publication Analysis

Top Keywords

evaluation model
16
large aperture
8
aperture static
8
static imaging
8
rectangular convolution
8
convolution sampling
8
spectral snr
8
snr lasis
8
lasis instrument
8
snr
7

Similar Publications

Purpose: To develop and validate an MRI-based model for predicting postoperative early (≤2 years) recurrence-free survival (RFS) in patients receiving upfront surgical resection (SR) for beyond Milan hepatocellular carcinoma (HCC) and to assess the model's performance in separate patients receiving neoadjuvant therapy for similar-stage tumors.

Method: This single-center retrospective study included consecutive patients with resectable BCLC A/B beyond Milan HCC undergoing upfront SR or neoadjuvant therapy. All images were independently evaluated by three blinded radiologists.

View Article and Find Full Text PDF

Models for pure tone audiometry enabling computational evaluation: Introduction to Japanese extensive experiences.

Auris Nasus Larynx

January 2025

Department of Otolaryngology, Faculty of Medicine, Teikyo University, Tokyo, Japan. Electronic address:

Pure tone audiometry including "masking" is the most basic test in audiological medicine. Masking is based on theoretical models of sound perception and propagation and has been widely discussed since the 1950s. In Japan, such discussion has been conducted extensively, starting from early periods up to recent times, with success to enable mathematical simulation, but the achievements have little been disclosed to the English-speaking world.

View Article and Find Full Text PDF

Background: The global aging population and rapid development of digital technology have made health management among older adults an urgent public health issue. The complexity of online health information often leads to psychological challenges, such as cyberchondria, exacerbating health information avoidance behaviors. These behaviors hinder effective health management; yet, little research examines their mechanisms or intervention strategies.

View Article and Find Full Text PDF

Background: Laparoscopic surgery training is a demanding process requiring technical and nontechnical skills. Surgical training has evolved from traditional approaches to the use of immersive digital technologies such as virtual, augmented, and mixed reality. These technologies are now integral to laparoscopic surgery training.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!