The present paper primarily tests and verifies the effect of NMF in blind source separation of three-dimensional simulative fluorescence spectra, and then four different computational algorithms (multiplicative iterative; alternating least square; second order method; projected gradient algorithm) were used in three practical phenolic compounds (cresol, phenol, thymol) overlapping fluorescence spectra to find out which nonnegatively constrained algorithms is the most efficient for fluorescence spectra unmixing. The experiments demonstrate that four ways have the normalized residuals below 0.06%, and alternating least square (ALS) is the best at both convergence behavior and robustness.
Download full-text PDF |
Source |
---|
Molecules
January 2025
Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences (MPI-NAT), Am Fassberg 11, 37077 Göttingen, Germany.
In a search for dyes photoactivatable with visible light, fluorenes with substituents at positions 2 and 7 were prepared, and their absorption and emission spectra were studied. In particular, the synthesis route to 9-diazofluorenes with 2-(N,N-dialkylamino) and N-modified 7-(4-pyridyl) substituents was established. These compounds are initially non-fluorescent, undergo photolysis with UV or blue light, and-in non-polar media-provide orange- to red-emitting products with a large separation between absorption and emission bands.
View Article and Find Full Text PDFMolecules
January 2025
School of Materials and Environment, Beijing Institute of Technology, Zhuhai 519088, China.
This study employs quantum chemical computational methods to predict the spectroscopic properties of fluorescent probes 2,6-bis(2-benzimidazolyl)pyridine (BBP) and ()-3-(2-(1-benzo[]imidazol-2-yl)vinyl)-9-(2-(2-methoxyethoxy)ethyl)-9-carbazole (BIMC). Using time-dependent density functional theory (TDDFT), we successfully predicted the fluorescence emission wavelengths of BBP under various protonation states, achieving an average deviation of 6.0% from experimental excitation energies.
View Article and Find Full Text PDFLife (Basel)
January 2025
School of Environment and Geography, Qingdao University, Qingdao 266071, China.
The potential health risks posed by the coexistence of nanoplastics (NPs) and triclosan (TCS) have garnered significant attention. However, the effects and underlying mechanisms of NPs and TCS on key functional proteins at the molecular level remain poorly understood. This study reports the effect of polystyrene nanoplastics (PSNPs) on the binding of TCS to human serum albumin (HSA) using multispectral methods and molecular simulation systems.
View Article and Find Full Text PDFFoods
January 2025
State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
In recent years, the consumption of liquid eggs has failed to meet the expectations of the public due to growing concerns regarding food safety and health. It is well known that there are interactions between the components in liquid eggs, and the interaction effect on the structure and functional properties of the proteins and antigenicity remains unclear. To investigate egg component interactions, we focused on four major egg lipids, namely phosphatidylcholine, palmitic acid, oleic acid, and linoleic acid, as well as four major egg proteins, including ovalbumin, ovotransferrin, ovomucoid, and lysozyme.
View Article and Find Full Text PDFFood Res Int
February 2025
Department of Food Technology, Federal University of Viçosa, Av. Peter Henry Rolfs, S/n, University Campus, 36570-900, Viçosa, MG, Brazil. Electronic address:
Adding value to food by-products, such as pumpkin seeds, is an important strategy for the complete utilization of plant foods and advancing sustainability goals. This study aimed to maximize the production of bioactive peptides from pumpkin seed protein (PSP) by combining ultrasonic (US) pretreatment (40 kHz, 23.8 W/L) with enzymatic hydrolysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!