Background: The Arabidopsis SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE (SPL) transcription factor SPL7 reprograms cellular gene expression to adapt plant growth and cellular metabolism to copper (Cu) limited culture conditions. Plant cells require Cu to maintain essential processes, such as photosynthesis, scavenging reactive oxygen species, cell wall lignification and hormone sensing. More specifically, SPL7 activity promotes a high-affinity Cu-uptake system and optimizes Cu (re-)distribution to essential Cu-proteins by means of specific miRNAs targeting mRNA transcripts for those dispensable. However, the functional mechanism underlying SPL7 activation is still to be elucidated. As SPL7 transcript levels are largely non-responsive to Cu availability, post-translational modification seems an obvious possibility. Previously, it was reported that the SPL7 SBP domain does not bind to DNA in vitro in the presence of Cu ions and that SPL7 interacts with a kin17 domain protein to raise SPL7-target gene expression upon Cu deprivation. Here we report how additional conserved SPL7 protein domains may contribute to the Cu deficiency response in Arabidopsis.

Results: Cytological and biochemical approaches confirmed an operative transmembrane domain (TMD) and uncovered a dual localisation of SPL7 between the nucleus and an endomembrane system, most likely the endoplasmic reticulum (ER). This new perspective unveiled a possible link between Cu deficit and ER stress, a metabolic dysfunction found capable of inducing SPL7 targets in an SPL7-dependent manner. Moreover, in vivo protein-protein interaction assays revealed that SPL7 is able to homodimerize, probably mediated by the IRPGC domain. These observations, in combination with the constitutive activation of SPL7 targets, when ectopically expressing the N-terminal part of SPL7 including the SBP domain, shed some light on the mechanisms governing SPL7 function.

Conclusions: Here, we propose a revised model of SPL7 activation and regulation. According to our results, SPL7 would be initially located to endomembranes and activated during ER stress as a result of Cu deficiency. Furthermore, we added the SPL7 dimerization in the presence of Cu ions as an additional regulatory mechanism to modulate the Cu deficiency response.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4158090PMC
http://dx.doi.org/10.1186/s12870-014-0231-5DOI Listing

Publication Analysis

Top Keywords

spl7
17
deficiency response
12
protein domains
8
gene expression
8
spl7 activation
8
sbp domain
8
presence ions
8
spl7 targets
8
domain
5
functional characterisation
4

Similar Publications

The role of the Arabidopsis tandem zinc-finger C3H15 protein in metal homeostasis.

Plant Physiol Biochem

November 2024

Departament de Bioquímica i Biologia Molecular, Universitat de València, Burjassot, Valencia, Spain. Electronic address:

Living organisms have developed finely regulated homeostatic networks to mitigate the effects of environmental fluctuations in transition metal micronutrients, including iron, zinc, and copper. In Saccharomyces cerevisiae, the tandem zinc-finger protein Cth2 post-transcriptionally regulates gene expression under conditions of iron deficiency by controlling the levels of mRNAs that code for non-essential ferroproteins. The molecular mechanism involves Cth2 binding to AU-rich elements present in the 3' untranslated region of target mRNAs, negatively affecting their stability and translation.

View Article and Find Full Text PDF

Cadmium induced a non-coding RNA microRNA535 mediates Cd accumulation in rice.

J Environ Sci (China)

August 2023

College of Environment, Zhejiang University of Technology, Hangzhou 310032, China. Electronic address:

Identifying key regulators related to cadmium (Cd) tolerance and accumulation is the main factor for genetic engineering to improve plants for bioremediation and ensure crop food safety. MicroRNAs (miRNAs), as fine-tuning regulators of genes, participate in various abiotic stress processes. MiR535 is an ancient conserved non-coding small RNA in land plants, positively responding to Cd stress.

View Article and Find Full Text PDF

Rice microRNA156/529-SQUAMOSA PROMOTER BINDING PROTEIN-LIKE7/14/17 modules regulate defenses against bacteria.

Plant Physiol

July 2023

National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China.

Rice (Oryza sativa L.) microRNA156/529-SQUAMOSA PROMOTER BINDING PROTEIN-LIKE7/14/17 (miR156/529-SPL7/14/17) modules have pleiotropic effects on many biological pathways. OsSPL7/14 can interact with DELLA protein SLENDER RICE1 (SLR1) to modulate gibberellin acid (GA) signal transduction against the bacterial pathogen Xanthomonas oryzae pv.

View Article and Find Full Text PDF

Plant ecologists and molecular biologists have long considered the hypothesis of a trade-off between plant growth and defence separately. In particular, how genes thought to control the growth-defence trade-off at the molecular level relate to trait-based frameworks in functional ecology, such as the slow-fast plant economics spectrum, is unknown. We grew 49 phenotypically diverse rice genotypes in pots under optimal conditions and measured growth-related functional traits and the constitutive expression of 11 genes involved in plant defence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!