The Hamiltonian describing E × e Jahn-Teller (JT) coupling and (E + A) × (e + a) pseudo-JT (PJT) coupling is developed beyond the standard JT theory for the example of XY3 systems, taking the bending modes of a and e symmetry into account. For the electrostatic (spin-free) Hamiltonian, the conventional Taylor expansion up to second order in symmetry-adapted displacements is replaced by an expansion in invariant polynomials up to arbitrarily high orders. The relevance of a systematic high-order expansion in the three large-amplitude bending modes is illustrated by the construction of an eighth-order three-sheeted three-dimensional ab initio potential-energy surface for PH3+. The theory of spin-orbit coupling in trigonal JT/PJT systems is extended beyond the standard model of JT theory by an expansion of the microscopic Breit-Pauli operator up to second order in symmetry-adapted vibrational coordinates. It is shown that a linear E × e JT effect of relativistic origin exists in C(3v) systems which vanishes at the planar (D(3h)) geometry. The linear relativistic 2E – 2A PJT coupling, on the other hand, persists at the planar geometry

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp506793zDOI Listing

Publication Analysis

Top Keywords

spin-orbit coupling
8
coupling trigonal
8
pjt coupling
8
bending modes
8
second order
8
order symmetry-adapted
8
linear relativistic
8
coupling
5
jahn-teller pseudo-jahn-teller
4
pseudo-jahn-teller hamiltonian
4

Similar Publications

Relativistic and electron-correlation effects in static dipole polarizabilities for group 12 elements.

Phys Chem Chem Phys

January 2025

Institute of Applied Analysis and Numerical Simulation, University of Stuttgart, Pfaffenwaldring 57, Stuttgart, 70569, Germany.

In this study, we report a comprehensive calculation of the static dipole polarizabilities of group 12 elements using the finite-field approach combined with the relativistic coupled-cluster method, including single, double, and perturbative triple excitations. Relativistic effects are systematically investigated, including scalar-relativistic, spin-orbit coupling (SOC), and fully relativistic Dirac-Coulomb contributions. The final recommended polarizability values are 37.

View Article and Find Full Text PDF

NbO(OH) has emerged as a highly attractive photocatalyst based on its chemical stability, energetic band positions, and large active lattice sites. Compared to other various photocatalytic semiconductors, it can be synthesized easily. This study presents a systematic analysis of pristine and doped NbO(OH) based on recent developments in related research.

View Article and Find Full Text PDF

Enhancing the Optically Detected Magnetic Resonance Signal of Organic Molecular Qubits.

ACS Cent Sci

January 2025

Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States.

In quantum information science and sensing, electron spins are often purified into a specific polarization through an optical-spin interface, a process known as optically detected magnetic resonance (ODMR). Diamond-NV centers and transition metals are both excellent platforms for these so-called color centers, while metal-free molecular analogues are also gaining popularity for their extended polarization lifetimes, milder environmental impacts, and reduced costs. In our earlier attempt at designing such organic high-spin π-diradicals, we proposed to spin-polarize by shelving triplet = ±1 populations as singlets.

View Article and Find Full Text PDF

The energy gaps, spin-orbit coupling (SOC), and admixture coefficients over a series of the configurations are evaluated by the SA-CASSCF/6-31G, SA-CASSCF/6-31G*, SA-CASSCF/ANO-RCC-VDZP, and MS-CASPT2/ANO-RCC-VDZP to reveal the extent of the inaccuracy of the SA-CASSCF. By comparing the mean absolute errors for the energy gaps and the admixture coefficient magnitudes (ACMs) measured between the SA-CASSCF/6-31G, SA-CASSCF/6-31G*, or SA-CASSCF/ANO-RCC-VDZP and the MS-CASPT2/ANO-RCC-VDZP, the SA-CASSCF/6-31G is selected as the electronic structure method in the nonadiabatic molecular dynamics simulation. The major components of the ACMs of the SA-CASSCF/6-31G and MS-CASPT2/ANO-RCC-VDZP are identified and compared; we find that the ACMs are underestimated by the SA-CASSCF/6-31G, which is verified by the reasonable triplet quantum yield simulated by the trajectory surface hopping and the calibrated SA-CASSCF/6-31G.

View Article and Find Full Text PDF

Though immunogenic cell death (ICD) has garnered significant attention in the realm of anticancer therapies, effectively stimulating strong immune responses with adequate antigen presentation in deep-seated cancers remains challenging. Herein, to promote antigen presentation, an efficient dual-targeted photodynamic ICD inducer is developed. Due to the enhanced spin-orbit coupling and electron structure modulation, the Cy5-I-CF probe showcases exceptional reactive oxygen species (ROS) generation capacity within cancer cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!