Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The B-site tailored YIn(1-x)Fe(x)O3 (0.0≤ x≤ 1.0) series was synthesized by glycine-aided gel-combustion technique and subjected to extensive structural and electrical investigations. The temperature had tremendous bearing on the phase evolution exhibited by the system. The entire system crystallized as C-type metastable polymorph in the as-synthesized form. Hexagonal polymorphs of Fe(3+)-rich compositions could be isolated by controlled heat treatment at 750 °C. Raman spectroscopic investigations showed that, while there is a general shrinkage of the lattice due to substitution of a smaller ion at In(3+)-site, there is an apparent dilation of the Y-O bond, and this anomaly reflects in the electrical behavior exhibited by the system. The single-phasic hexagonal nominal compositions, YIn(1-x)Fe(x)O3 (0.0 ≤ x ≤ 0.3), were also studied by impedance spectroscopy. The dielectric constant was found to drastically increase from 10 for YInO3 to 1000 for YIn(0.7)Fe(0.3)O3 at room temperature stressing the role of B-site tailoring on electrical behavior. More interestingly, careful substitution of Fe into YInO3 could tune the electrical behavior from a dielectric to relaxor ferroelectric in the temperature range studied. The nominal composition YIn(0.7)Fe(0.3)O3 showed a classical relaxor ferroelectric like behavior which is an important observation in context of the search for new lead free relaxor materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ic5009472 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!