To investigate the molecular mechanism underlying the neuroprotective effect of lithium on cells, in this study, we exposed SH-SY5Y cells to 0.5 mmol/L lithium carbonate (Li2CO2) for 25-50 weeks and then detected the expression levels of some neurobiology related genes and post-translational modifications of stress proteins in SH-SY5Y cells. cDNA arrays showed that pyruvate kinase 2 (PKM2) and calmodulin 3 (CaM 3) expression levels were significantly down-regulated, phosphatase protein PP2A expression was lightly down-regulated, and casein kinase II (CK2), threonine/tyrosine phosphatase 7 (PYST2), and dopamine beta-hydroxylase (DBH) expression levels were significantly up-regulated. Besides, western blot analysis of stress proteins (HSP27, HSP70, GRP78 and GRP94) showed an over-expression of two proteins: a 105 kDa protein which is a hyper-phosphorylated isoform of GRP94, and a 108 kDa protein which is a phosphorylated tetramer of HSP27. These results suggest that the neuroprotective effects of lithium are likely related to gene expressions and post-translational modifications of proteins cited above.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4146276PMC
http://dx.doi.org/10.4103/1673-5374.131578DOI Listing

Publication Analysis

Top Keywords

sh-sy5y cells
12
stress proteins
12
expression levels
12
neuroprotective effects
8
post-translational modifications
8
kda protein
8
proteins
5
expression
5
chronic neuroprotective
4
effects low
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!