Diffusion-tensor imaging can be used to observe the microstructure of brain tissue. Fractional sotropy reflects the integrity of white matter fibers. Fractional anisotropy of a young adult brain is low in gray matter, high in white matter, and highest in the splenium of the corpus callosum. Thus, we selected the anterior and posterior limbs of the internal capsule, head of the caudate nucleus, semioval center, thalamus, and corpus callosum (splenium and genu) as regions of interest when using diffusion-tensor imaging to observe fractional anisotropy of major white matter fiber tracts and the deep gray matter of healthy rhesus monkeys aged 4-8 years. Results showed no laterality ferences in fractional anisotropy values. Fractional anisotropy values were low in the head of date nucleus and thalamus in gray matter. Fractional anisotropy values were highest in the splenium of corpus callosum in the white matter, followed by genu of the corpus callosum and the posterior limb of the internal capsule. Fractional anisotropy values were lowest in the semioval center and posterior limb of internal capsule. These results suggest that fractional anisotropy values in major white matter fibers and the deep gray matter of 4-8-year-old rhesus monkeys are similar to those of healthy young people.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4146173PMC
http://dx.doi.org/10.3969/j.issn.1673-5374.2013.31.008DOI Listing

Publication Analysis

Top Keywords

fractional anisotropy
28
white matter
20
anisotropy values
20
gray matter
16
corpus callosum
16
diffusion-tensor imaging
12
internal capsule
12
matter
9
imaging observe
8
fractional
8

Similar Publications

Mucopolysaccharidosis type I (MPS I) is an inherited lysosomal storage disorder leading to deleterious brain effects. While animal models suggested that MPS I severely affects white matter (WM), whole-brain diffusion tensor imaging (DTI) analysis was not performed due to MPS-related morphological abnormalities. 3T DTI data from 28 severe (MPS IH, treated with hematopoietic stem cell transplantation-HSCT), 16 attenuated MPS I patients (MPS IA) enrolled under the study protocol NCT01870375, and 27 healthy controls (HC) were analyzed using the free-water correction (FWC) method to resolve macrostructural partial volume effects and unravel differences in DTI metrics accounting for microstructural abnormalities.

View Article and Find Full Text PDF

Phenotypic and genetic relationships between white matter microstructure (i.e., fractional anisotropy [FA]) and peripheral inflammatory responses (i.

View Article and Find Full Text PDF

Cellular and extracellular white matter alterations after childhood trauma experience in individuals with schizophrenia.

Psychol Med

January 2025

Center for Neuroimaging, Cognition and Genomics (NICOG), Clinical Neuroimaging Laboratory, Galway Neuroscience Centre, University of Galway, Galway, Ireland.

Background: Childhood trauma (CT) is related to altered fractional anisotropy (FA) in individuals with schizophrenia (SZ). However, it remains unclear whether CT may influence specific cellular or extracellular compartments of FA in SZ with CT experience. We extended our previous study on FA in SZ (Costello et al.

View Article and Find Full Text PDF

Alpha-synuclein (αS) aggregation is a widely regarded hallmark of Parkinson's disease (PD) and can be detected through synuclein amplification assays (SAA). This study investigated the association between cerebrospinal fluid (CSF) radiological measures in 41 PD patients (14 iPD, 14 GBA1-PD, 13 LRRK2-PD) and 14 age-and-sex-matched healthy controls. Quantitative measures including striatal binding ratios (SBR), whole-brain and deep gray matter volumes, neuromelanin-MRI (NM-MRI), functional connectivity (FC), and white matter (WM) diffusion-tensor imaging (DTI) were calculated.

View Article and Find Full Text PDF

Extracellular matrix (ECM) is a network of macromolecules which has two forms - perineuronal nets (PNNs) and a diffuse ECM (dECM) - both influence brain development, synapse formation, neuroplasticity, CNS injury and progression of neurodegenerative diseases. ECM remodeling can influence extrasynaptic transmission, mediated by diffusion of neuroactive substances in the extracellular space (ECS). In this study we analyzed how disrupted PNNs and dECM influence brain diffusibility.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!