Zinc Finger Nucleases: A new era for transgenic animals.

Ann Neurosci

Sigma Advanced Genetic Engineering (SAGE) Labs, Sigma-Aldrich Biotechnology, St. Louis, MO 63146, USA.

Published: January 2011

The rational engineering of eukaryotic genomes would facilitate the study of heritable changes in gene expression and offer enormous potential across basic research, drug-discovery, bioproduction and therapeutic development. A significant advancement toward this objective was achieved with the advent of a novel technology that enables high-frequency and high-fidelity genome editing via the application of custom designed zinc finger nucleases (ZFNs). A ZFN is a chimeric protein that consists of the non-specific endonuclease domain of FokI fused to a DNA-binding domain composed of an engineered zinc-finger motif. Within these chimeric proteins, the DNA binding specificity of the zinc finger protein determines the site of nuclease action. Once the engineered ZFNs recognize and bind to their specified locus, it leads to the dimerization of the two nuclease domains on the ZFNs to evoke a double-strand break (DSB) in the targeted DNA. The cell then employs the natural DNA repair processes of either non-homologous end joining (NHEJ) or homology-directed repair (HDR) to repair the targeted break. Due to the imperfect fidelity of NHEJ, a proportion of DSBs within a ZFN-treated cellular population will be misrepaired, leading to cells in which variable heterogeneous genetic insertions or deletions have been made at the target site. Alternatively, the HDR repair pathway enables precise insertion of a transgene or other defined alterations into the targeted region. By this approach, a donor template containing the transgene flanked by sequences that are homologous to the regions either side of the cleavage site is co-delivered into the cell along with the ZFNs. By creating a specific DSB, these cellular repair mechanisms are harnessed to generate precisely targeted genomic edits resulting in both cell lines and animal models with targeted gene deletions, integrations, or modifications. This review will discuss the development, mechanism of action, and applications of ZFN technology to genome engineering and the creation of animal models.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4117018PMC
http://dx.doi.org/10.5214/ans.0972.7531.1118109DOI Listing

Publication Analysis

Top Keywords

zinc finger
12
finger nucleases
8
hdr repair
8
animal models
8
targeted
5
repair
5
nucleases era
4
era transgenic
4
transgenic animals
4
animals rational
4

Similar Publications

Swedish Warmblood horses (SWB) are bred for show jumping and/or dressage with young horse test scores as indicator traits. This study aimed to investigate possible candidate genes and regions of importance for evaluated and linearly scored young horse test traits. A single-step genome-wide association study (ssGWAS) was done using the BLUPF90 suite of programs for factors scores from factor analysis of traits assessed at young horse tests together with height at withers.

View Article and Find Full Text PDF

Unveiling the mechanism of action of a novel natural dual inhibitor of SARS-CoV-2 Mpro and PLpro with molecular dynamics simulations.

Nat Prod Bioprospect

January 2025

Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.

In the twenty-first century, we have witnessed multiple coronavirus pandemics. Despite declining SARS-CoV-2 cases, continued research remains vital. We report the discovery of sydowiol B, a natural product, as a dual inhibitor of SARS-CoV-2 main protease (Mpro) and papain-like protease (PLpro).

View Article and Find Full Text PDF

Shh Protects the Injured Spinal Cord in Mice by Promoting the Proliferation and Inhibiting the Apoptosis of Nerve Cells via the Gli1-TGF-β1/ERK Axis.

Cell Biochem Funct

January 2025

Stem Cells & Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China.

Spinal cord injury (SCI) is a common neurological trauma that cannot be completely cured with surgical techniques and medications. In this study, we established a mouse SCI model and used an adeno-associated virus (AAV) to achieve the high expression of sonic hedgehog (Shh) at the injury site to further investigate the therapeutic effect and mechanism of Shh on SCI. The results of the present study show that Shh may promote motor function recovery.

View Article and Find Full Text PDF

Background: Hallmark pathologies of Alzheimer's Disease (AD) include the accumulation of both extracellular amyloid and intracellular tau proteins. While a significant body of knowledge exists surrounding the role of the protein aggregates in the context of AD, research supporting these as targets for therapeutic development have yielded inconsistent findings. One significant barrier is the inability to restore cognitive function despite the successful clearance of these proteins.

View Article and Find Full Text PDF

The zinc finger protein560(ZNF560) functions as a novel oncogenic gene in osteosarcoma.

Sci Rep

January 2025

Department of Joint Surgery, The Second Affiliated Hospital of Nantong University, No. 666, ShengLi Road, Chongchuan District, Nantong, 226001, Jiangsu, P.R. China.

Background: Abnormal expression of Zinc finger (ZNF) genes is commonly observed in osteosarcoma (OS), the most prevalent malignant bone tumor in children and teenagers. This project focused on the role of ZNF560 in the progress of OS.

Methods: The published datasets including TCGA-SARC and GSE99671 was utilized to screen out the abnormal expression of ZNF560 and associated gene patterns in sarcoma and OS tissues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!