Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We investigated the toxicity of bisphenol A (BPA) by determining the gene expression of nerve growth factor (Ngf in the embryonic mouse cell line mHypoE-N44 derived from the hypothalamus exposed to BPA dose range between 0.02 and 200 μmol L-1 for 3 h. Ngf mRNA levels decreased in a dose-dependent manner, with significant reductions observed in the 2 to 50 μmol L-1 BPA treatment groups compared to controls. However, at 100 to 200 μmol L-1 the NgfmRNA gradually increased and was significantly higher than control, while the expression of the apoptosis-related genes Caspase 3 and transformation-related protein 73 decreased significantly. These results suggest that in an embryonic hypothalamic cell line the higher doses of BPA induce a unique pattern of Ngf gene expression and that BPA has the potential to suppress apoptosis essential for early-stage brain development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2478/10004-1254-65-2014-2494 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!