Aims/hypothesis: Insulin resistance, a major contributor to the pathogenesis of type 2 diabetes, leads to increased hepatic glucose production (HGP) owing to an impaired ability of insulin to suppress hepatic gluconeogenesis. Nuclear receptor oestrogen-related receptor γ (ERRγ) is a major transcriptional regulator of hepatic gluconeogenesis. In this study, we investigated insulin-dependent post-translational modifications (PTMs) altering the transcriptional activity of ERRγ for the regulation of hepatic gluconeogenesis.
Methods: We examined insulin-dependent phosphorylation and subcellular localisation of ERRγ in cultured cells and in the liver of C57/BL6, leptin receptor-deficient (db/db), liver-specific insulin receptor knockout (LIRKO) and protein kinase B (PKB) β-deficient (Pkbβ (-/-)) mice. To demonstrate the role of ERRγ in the inhibitory action of insulin on hepatic gluconeogenesis, we carried out an insulin tolerance test in C57/BL6 mice expressing wild-type or phosphorylation-deficient mutant ERRγ.
Results: We demonstrated that insulin suppressed the transcriptional activity of ERRγ by promoting PKB/Akt-mediated phosphorylation of ERRγ at S179 and by eliciting translocation of ERRγ from the nucleus to the cytoplasm through interaction with 14-3-3, impairing its ability to promote hepatic gluconeogenesis. In addition, db/db, LIRKO and Pkbβ (-/-) mice displayed enhanced ERRγ transcriptional activity due to a block in PKBβ-mediated ERRγ phosphorylation during refeeding. Finally, the phosphorylation-deficient mutant ERRγ S179A was resistant to the inhibitory action of insulin on HGP.
Conclusions/interpretation: These results suggest that ERRγ is a major contributor to insulin action in maintaining hepatic glucose homeostasis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00125-014-3366-x | DOI Listing |
Front Nutr
December 2024
Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
High sugar, high-fat diets and unhealthy lifestyles have led to an epidemic of obesity and obesity-related metabolic diseases, seriously placing a huge burden on socio-economic development. A deeper understanding and elucidation of the specific molecular biological mechanisms underlying the onset and development of obesity has become a key to the treatment of metabolic diseases. Recent studies have shown that the changes of bile acid composition are closely linked to the development of metabolic diseases.
View Article and Find Full Text PDFMetabolism
December 2024
Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, United States of America.
Aims: NAD deficiency underlies obesity-induced metabolic disturbances. This study evaluated dihydronicotinamide riboside (NRH), a potent NAD enhancer, in lean and obese mice and explored whether NRH operates through a unique mechanism involving adenosine kinase (ADK), an enzyme critical for NRH-driven NAD synthesis.
Methods: Pharmacokinetic and pharmacodynamic analyses were performed following a single 250 mg/kg intraperitoneal injection of NRH in healthy mice.
Phytochemistry
December 2024
Key Laboratory of Ethnic Medicine Resource Chemistry, Ministry of Education, Yunnan Minzu University, Kunming, 650500, Yunnan, People's Republic of China; Yunnan Key Laboratory of Chiral Functional Substance Research and Application, Yunnan Minzu University, Kunming, 650504, People's Republic of China. Electronic address:
Fibraurea recisa Pierre is a vine plant and its vine stems are used as a traditional Chinese medicine to treat heat toxin, constipation, diarrhea, sore throat, eye inflammation, carbuncles, and skin ulcers. The alkaloid chemical composition of this plant has been extensively studied; however, investigations into non-alkaloid components remain limited. In this study, phytochemical studies of the vine stems of F.
View Article and Find Full Text PDFCell Metab
December 2024
State Key Laboratory of Membrane Biology, MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China. Electronic address:
Glucagon is essential for glucose homeostasis, and its dysregulation is associated with diabetes. Despite extensive research, the mechanisms governing glucagon secretion remain incompletely understood. Here, we unveil that famsin, a gut-secreted hormone, promotes glucagon release and modulates glucose homeostasis.
View Article and Find Full Text PDFFoods
November 2024
College of Food Science and Engineering, Bohai University, Jinzhou 121013, China.
This study aimed to ascertain the potential benefits of green radish polysaccharide (GRP) in treating alcoholic liver disease (ALD) in mice and explore its mechanism of action. Using biochemical analysis, high-throughput sequencing of gut microbiota, and gas chromatography-mass spectrometry to measure short-chain fatty acids (SCFAs) in feces, we found that GRP intervention significantly improved lipid metabolism and hepatic function in mice subjected to excessive alcohol intake. The GRP intervention reduced malondialdehyde levels by 66% and increased total superoxide dismutase levels by 22%, thereby mitigating alcohol-induced oxidative stress.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!