Contextual modulation as de-texturizer.

Vision Res

University of Groningen, Nijenborgh 9, 9747 AG Groningen, The Netherlands.

Published: November 2014

Contextual modulation refers to the effect of texture placed outside of a neuron's classical receptive field as well as the effect of surround texture on the perceptual properties of variegated regions within. In this minireview, we argue that one role of contextual modulation is to enhance the perception of contours at the expense of textures, in short to de-texturize the image. The evidence for this role comes mainly from three sources: psychophysical studies of shape after-effects, computational models of neurons that exhibit iso-orientation surround inhibition, and fMRI studies revealing specialized areas for contour as opposed to texture processing. The relationship between psychophysical studies that support the notion of contextual modulation as de-texturizer and those that investigate contour integration and crowding is discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.visres.2014.08.013DOI Listing

Publication Analysis

Top Keywords

contextual modulation
16
modulation de-texturizer
8
psychophysical studies
8
contextual
4
de-texturizer contextual
4
modulation refers
4
refers texture
4
texture neuron's
4
neuron's classical
4
classical receptive
4

Similar Publications

Background: Motivated behaviors vary widely across individuals and are controlled by a range of environmental and intrinsic factors. However, due to a lack of objective measures, the role of intrinsic extrinsic control of motivation in psychiatric disorders remains poorly understood.

Methods: We developed a novel multi-factorial behavioral task that separates the distinct contributions of intrinsic extrinsic control, and determines their influence on motivation and outcome sensitivity in a range of contextual environments.

View Article and Find Full Text PDF

Contextual modulation emerges by integrating feedforward and feedback processing in mouse visual cortex.

Cell Rep

December 2024

Center for Theoretical Neuroscience and Mortimer B Zuckerman Mind Brain Behavior Institute, Columbia University, New York City, NY 10027, USA; Department of Neuroscience, Swartz Program in Theoretical Neuroscience, Kavli Institute for Brain Science, College of Physicians and Surgeons and Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York City, NY 10027, USA.

Sensory systems use context to infer meaning. Accordingly, context profoundly influences neural responses to sensory stimuli. However, a cohesive understanding of the circuit mechanisms governing contextual effects across different stimulus conditions is still lacking.

View Article and Find Full Text PDF

The complex neural activity of prefrontal cortex (PFC) is a hallmark of cognitive processes. How these rich dynamics emerge and support neural computations is largely unknown. Here, we infer mechanisms underlying the context-dependent integration of sensory inputs by fitting dynamical models to PFC population responses of behaving monkeys.

View Article and Find Full Text PDF

Cloud Removal in the Tibetan Plateau Region Based on Self-Attention and Local-Attention Models.

Sensors (Basel)

December 2024

School of Surveying and Geo-Informatics, Shandong Jianzhu University, Fengming Road, Jinan 250101, China.

Optical remote sensing images have a wide range of applications but are often affected by cloud cover, which interferes with subsequent analysis. Therefore, cloud removal has become indispensable in remote sensing data processing. The Tibetan Plateau, as a sensitive region to climate change, plays a crucial role in the East Asian water cycle and regional climate due to its snow cover.

View Article and Find Full Text PDF

Guilu Erxian Jiao remodels dendritic spine morphology through activation of the hippocampal TRPC6-CaMKIV-CREB signaling pathway and suppresses fear memory generalization in rats with post-traumatic stress disorder.

J Ethnopharmacol

December 2024

Integrative Medicine Research Center, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Outer Ring East Road No. 232, Higher Education Mega Center, Guangzhou, 510006, China. Electronic address:

Ethnopharmacological Relevance: Guilu Erxian Jiao (GLEXJ) is a renowned traditional Chinese herbal formula used to tonify the kidney. It is employed to treat psychiatric disorders, and alleviate memory impairment, cognitive dysfunction, and behavioral disorders. Modern pharmacological studies have demonstrated GLEXJ's ability to significantly inhibit the fear response in post-traumatic stress disorder (PTSD) and facilitate the extinction of fear memory.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!