La0.7Sr0.3Mn(3+)0.85Sb(5+)0.15O3 and La0.7Sr0.3Mn(3+)0.8Sb(5+)0.1Ge(4+)0.1O3 compounds with dominantly isovalent Mn3+ ions were studied by neutron powder diffraction and magnetization measurements. The compounds are basically ferromagnetic, with magnetic moments slightly above of 3 μB/Mn. Upon temperature decrease, the compounds exhibit structural transition from a rhombohedral phase to orbitally disordered orthorhombic one. The structural transitions occur well above the temperature of magnetic ordering (Tc ≈ 130 K). It is suggested that the ferromagnetic state is governed by the positive part of superexchange interactions Mn(3+)‒O‒Mn(3+), which is enhanced by Mn(eg)‒O(2p) hybridization.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0953-8984/26/39/396002DOI Listing

Publication Analysis

Top Keywords

ferromagnetic interactions
4
interactions mn3+
4
mn3+ based
4
based perovskites
4
perovskites la07sr03mn3+085sb5+015o3
4
la07sr03mn3+085sb5+015o3 la07sr03mn3+08sb5+01ge4+01o3
4
la07sr03mn3+08sb5+01ge4+01o3 compounds
4
compounds dominantly
4
dominantly isovalent
4
isovalent mn3+
4

Similar Publications

We propose an alternative scheme for implementing the antibunching effects of two-magnon bundle in a hybrid ferromagnet-superconductor system, where a magnon mode from the yttrium iron garnet (YIG) sphere interacts with a three-level superconducting qubit via photon virtual excitation in the microwave cavity. With the help of the qubit driving from the ground state to the excited state, the cascaded emission of magnon occurs and then the two-magnon bundle is formed. By analyzing the ordinary and generalized second-order correlation functions, it is found that the antibunched two-magnon bundle could be achieved via properly choosing the system parameters, which is originated from the anharmonicity of dressed energy levels induced by magnon-qubit couplings.

View Article and Find Full Text PDF

The coordination compounds featuring a {CuO} core, typically bridged by hydroxo or alkoxo groups, are particularly intriguing due to their notable magnetic properties and catalytic activity. In this study, we explored the synthesis and characterization of four new Schiff base ligands and their subsequent complexation with Cu salts, which resulted in the formation of three tetranuclear complexes: [Cu(L)]·2HO (1), [Cu(L)(HL)](Cl)(NO)·5HO (2), and [Cu(L)] (3), as well as one dinuclear complex: [Cu(L)] (4). These tetranuclear complexes all feature a {CuO} core, but with differing coordination environments around the Cu centers.

View Article and Find Full Text PDF

CO-templated [LnNi] heterometallic compounds for enhanced magnetocaloric effects at low fields.

Dalton Trans

January 2025

State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.

In the history of magnetochemistry development, lanthanide-transition (3d-4f) heterometallic compounds have been considered an attractive candidate for magnetic refrigerants. Herein, a series of heterometallic compounds have been designed and templated by CO anions, that is, {[LnNi(L)(CO)(HO)]·HO} [Ln = Gd (. Gd2Ni) = Sm (.

View Article and Find Full Text PDF

Nonvolatile Magnonics in Bilayer Magnetic Insulators.

Nano Lett

January 2025

Smart Ferroic Materials Center, Physics Department and Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States.

Nonvolatile control of spin order or spin excitations offers a promising avenue for advancing spintronics; however, practical implementation remains challenging. In this Letter, we propose a general framework to realize electrical control of magnons in 2D magnetic insulators. We demonstrate that in bilayer ferromagnetic insulators with strong spin-layer coupling, the electric field can effectively manipulate the spin exchange interactions between the layers, enabling nonvolatile control of the corresponding magnons.

View Article and Find Full Text PDF

Searching for single-molecule magnets (SMM) with large effective blocking barriers, long relaxation times, and high magnetic blocking temperatures is vitally important not only for the fundamental research of magnetism at the molecular level but also for the realization of new-generation magnetic memory unit. Actinides (An) atoms possess extremely strong spin-orbit coupling (SOC) due to their 5 orbitals, and their ground multiplets are largely split into several sublevels because of the strong interplay between the SOC of An atoms and the crystal field (CF) formed by ligand atoms. Compared to TM-based SMMs, more dispersed energy level widths of An-based SMMs will give a larger total zero field splitting (ZFS) and thus provide a necessary condition to derive a higher .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!