Remote control of tissue interactions via engineered photo-switchable cell surfaces.

Sci Rep

1] Department of Chemistry, Carolina Center for Genome Science, Carolina Center for Cancer Nanotechnology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA [2] Department of Chemistry and Biology, Centre for Research in Biomolecular Interactions, York University, Toronto, Ontario, M3J 1P3, Canada.

Published: September 2014

AI Article Synopsis

  • The text describes a novel method for engineering cell surfaces using liposome fusion delivery, allowing for the creation of a dual-function system that can be remotely controlled to assemble and disassemble microtissues.
  • This approach involves modifying cell surface properties with chemoselective functional groups, which provides precise control over how cells interact through new techniques like flow cytometry and lipid pull-down mass spectrometry.
  • The technique enables dynamic manipulation of complex tissue structures, facilitating applications in areas like stem cell differentiation, drug delivery, and regenerative medicine while advancing our understanding of cellular communication.

Article Abstract

We report a general cell surface molecular engineering strategy via liposome fusion delivery to create a dual photo-active and bio-orthogonal cell surface for remote controlled spatial and temporal manipulation of microtissue assembly and disassembly. Cell surface tailoring of chemoselective functional groups was achieved by a liposome fusion delivery method and quantified by flow cytometry and characterized by a new cell surface lipid pull down mass spectrometry strategy. Dynamic co-culture spheroid tissue assembly in solution and co-culture tissue multilayer assembly on materials was demonstrated by an intercellular photo-oxime ligation that could be remotely cleaved and disassembled on demand. Spatial and temporal control of microtissue structures containing multiple cell types was demonstrated by the generation of patterned multilayers for controlling stem cell differentiation. Remote control of cell interactions via cell surface engineering that allows for real-time manipulation of tissue dynamics may provide tools with the scope to answer fundamental questions of cell communication and initiate new biotechnologies ranging from imaging probes to drug delivery vehicles to regenerative medicine, inexpensive bioreactor technology and tissue engineering therapies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4159631PMC
http://dx.doi.org/10.1038/srep06313DOI Listing

Publication Analysis

Top Keywords

cell surface
20
cell
10
remote control
8
liposome fusion
8
fusion delivery
8
spatial temporal
8
tissue
5
surface
5
control tissue
4
tissue interactions
4

Similar Publications

Objective: TRIB3 has been confirmed to participate in and regulate biological metabolic activities in head and neck tumors such as nasopharyngeal carcinoma and oropharyngeal carcinoma, so the purpose of this study was to explore whether there is a correlation between TRIB3 and Laryngeal Squamous Cell Carcinoma (LSCC) and to preliminarily explore the biological characteristics of TRIB3 in LSCC.

Methods: TRIB3 expression in the LSCC was analyzed based on The Cancer Genome Atlas (TCGA) database. CCK-8 assay, Colony Formation Assay, wound healing assay, and Transwell assay were performed to investigate the roles of TRIB3 in the proliferation, invasion and metastasis of LSCC.

View Article and Find Full Text PDF

Surface-Sensitive Waveguide Imaging for In Situ Analysis of Membrane Protein Binding Kinetics.

Anal Chem

January 2025

Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

Ligand binding to membrane proteins initiates numerous therapeutic processes. Surface plasmon resonance (SPR), a popular method for analyzing molecular interactions, has emerged as a promising tool for in situ determination of membrane protein binding kinetics owing to its label-free detection, high surface sensitivity, and resistance to intracellular interference. However, the excitation of SPR relies on noble metal films, typically gold, which are biologically incompatible and can cause fluorescence quenching.

View Article and Find Full Text PDF

Babesiosis in sickle cell disease (SCD) is marked by severe anemia but the underlying red blood cell (RBC) rheological parameters remain largely undefined. Here, we describe altered RBC deformability from both primary (host RBC sickle hemoglobin mediated) and secondary changes (Babesia parasite infection mediated) to the RBC membrane using wild type AA, sickle trait AS and sickle SS RBCs. Our ektacytometry (LORRCA) analysis demonstrates that the changes in the host RBC bio-mechanical properties, pre- and post- Babesia infection, reside on a spectrum of severity, with wild type infected AA cells, despite showing a significant reduction of deformability under both shear and osmolarity gradients, exhibiting only a mild phenotype; compared to infected AS RBCs which show median changes in deformability and infected SS RBCs which exhibit the most dramatic impact of infection on cellular rheology, including an increase in Point of Sickling values.

View Article and Find Full Text PDF

Improving the Electrochemical Properties of SiO Anode for High-Performance Lithium-Ion Batteries by Magnesiothermic Reduction and Prelithiation.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), and Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China.

For lithium-ion batteries, silicon monoxide is a potential anode material, but its application is limited by its relatively large irreversible capacity loss, which leads to its low initial Coulombic efficiency (ICE). In this study, we conduct a two-step reaction for the formation of silicon oxide-based materials, including a magnesiothermic reduction of SiO with Mg, followed by the solid-state lithiation of silicon oxide with LiCO. Our results demonstrate that Mg can reduce SiO to Si and form MgSiO, while LiCO reacts with SiO to form LiSiO.

View Article and Find Full Text PDF

T cells play a pivotal role in the development of autoimmune diseases. To mitigate autoimmune inflammation without inducing global immunosuppression, it is crucial to selectively eliminate autoreactive T cell clones while preserving the normal T cell repertoire. In this study, we applied cellular proximity chemistry to develop a T-cell depletion method with clonal precision.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!