The results from a kinetic investigation of a Cu-catalyzed oxidative coupling reaction between N-phenyl tetrahydroisoquinoline and a silyl enol ether using elemental oxygen as oxidant are presented. By using reaction progress kinetic analysis as an evaluation method for the obtained data, we discovered information regarding the reaction order of the substrates and catalysts. Based on this information and some additional experiments, a refined model for the initial oxidative activation of the amine substrate and the activation of the nucleophile by the catalyst was developed. The mechanistic information also helped to understand why silyl nucleophiles have previously failed in a related Cu-catalyzed reaction using tert-butyl hydroperoxide as oxidant and how to overcome this limitation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jo5018876 | DOI Listing |
Nucleosides Nucleotides Nucleic Acids
January 2025
Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China.
In the early stages, chronic kidney disease (CKD) can be asymptomatic, marking diagnosis difficult. This study aimed to investigate the diagnostic role and potential regulatory mechanisms of nucleolar protein 14 (NOP14) -antisense RNA 1 (AS1) in patients with CKD. Herein, 68 patients with CKD, 65 patients with CKD undergoing peridialysis, and 80 healthy adults were included.
View Article and Find Full Text PDFJ Clin Med
January 2025
Department of Health Sciences (DISSAL), University of Genoa, 16126 Genoa, Italy.
In immunocompromised patients, pneumonia presents a diagnostic challenge due to diverse etiologies, nonspecific symptoms, overlapping radiological presentation, frequent co-infections, and the potential for rapid progression to severe disease. Thus, timely and accurate diagnosis of all pathogens is crucial. This narrative review explores the latest advancements in microbiological diagnostic techniques for pneumonia in immunocompromised patients.
View Article and Find Full Text PDFMolecules
January 2025
School of Light Industry, Beijing Technology and Business University (BTBU), Beijing 100048, China.
Climate change and the energy crisis, driven by excessive CO emissions, have emerged as pressing global challenges. The conversion of CO into high-value chemicals not only mitigates atmospheric CO levels but also optimizes carbon resource utilization. Enzyme-catalyzed carbon technology offers a green and efficient approach to CO conversion.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
High Complexity Center, Instituto Galzu, Campos dos Goytacazes 28110-000, RJ, Brazil.
In the year 2019, a highly virulent coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged, precipitating the outbreak of the illness known as coronavirus disease 2019 (COVID-19). The commonly employed reverse transcription polymerase chain reaction (RT-qPCR) methodology serves to estimate the viral load in each patient's sample by employing a standard curve. However, it is imperative to recognize that this technique exhibits limitations with respect to clinical diagnosis and therapeutic applications, since an advancement of the conventional polymerase chain reaction methods, digital polymerase chain reaction (digital PCR or DDPCR), enables the direct quantification and clonal amplification of nucleic acid strands.
View Article and Find Full Text PDFMedicina (Kaunas)
January 2025
Department of Neurology and Neurosurgery, Riga East University Hospital, LV-1038 Riga, Latvia.
Multiple sclerosis (MS) is a chronic inflammatory, autoimmune, and neurodegenerative disease of the central nervous system. The disease can manifest and progress with both physical and cognitive symptoms, affecting the patient's daily activities. The aim of our study was to investigate the correlation between functional status, cognitive functions, and neurofilament light chain levels in plasma in MS patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!