Copper oxide based systems are well appreciated for their oxidation activity. The present piece of work discusses the redox properties and catalytic activity of CuO impregnated on mesoporous alumina support. A series of catalysts with copper loading varying from 2.0 to 14 wt% were prepared by deposition precipitation method on meso alumina obtained via surfactant assisted route using dodecylamine. CO oxidation has been taken as the test reaction for investigating the catalytic activity of these systems. The catalysts are characterised by TEM, SEM, XRD, FTIR spectroscopy, DR UV spectroscopy, N2 adsorption-desorption study, ESR spectroscopy and TPR using H2. The characterisations indicated CuO in highly dispersed amorphous state at copper loadings <14 wt% in the samples, and as crystalline phase at higher loadings. Easily reducible well dispersed CuO species favoured the reaction, indicating the decisive role of reducibility of the catalysts in CO oxidation. Almost complete oxidation of CO was affected over the system under the prescribed reaction conditions, and practically nil deactivation was recorded when the reaction was performed over a period of 50h.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2014.08.005 | DOI Listing |
Nanoscale
January 2025
Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, 16424 Depok, West Java, Indonesia.
This study reports on the development of a highly sensitive non-enzymatic electrochemical sensor based on a two-dimensional TiCT/MWCNT-OH nanocomposite for the detection of paraoxon-based pesticide. The synergistic effect between the TiCT nanosheet and the functionalized multi-walled carbon nanotubes enhanced the sensor's conductivity and catalytic activity. The nanocomposite demonstrates superior electrochemical and electroanalytical performance compared to the pristine TiCT and MWCNT-OH in detecting paraoxon-ethyl in fruit samples (green and red grapes), with a linear response range from 0.
View Article and Find Full Text PDFChem Soc Rev
January 2025
National-local Joint Engineering Research Center of Biomass Refining and High-quality Utilization, Changzhou University, Changzhou 213164, China.
Multiple oxygenate groups in biomass-based feedstocks are open to multiple catalytic pathways and products, typically resulting in low selectivity for the desired products. In this context, strategies for rational catalyst design are critical to obtain high selectivity for the desired products in biomass upgrading. The Sabatier principle provides a conceptual framework for designing optimal catalysts by following the volcanic relationship between catalyst activity for a reaction and the binding strength of a substrate on a catalyst.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, United Kingdom.
Mass transfer governs the overall catalytic performance of heterogeneous catalysts considerably; however, this fundamental research has often been ignored. Here, macroporous SiO-supported Pt nanoparticle (Pt/SiO-M) and mesoporous SiO-supported Pt nanoparticle (Pt/SiO-m) catalysts were specifically fabricated by a facile thermal reduction step to engineer the resultant Pt nanoparticles showing similar physiochemical properties while possessing completely different porous microstructures exclusively originating from SiO supports. On this basis, a platform to explore the crucial mass transfer difference affecting catalytic activity is then established by systematically practicing industry-important benzene oxidation measurements.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Department of Chemistry, Utkal University, Bhubaneswar, 751 004, Odisha, India.
This research highlights a sustainable approach for the design and synthesis of a magnetic nickel ferrite (NiFeO) catalyst reutilizing industrial waste, specifically iron ore tailing and Raney nickel catalyst processing waste, by simple co-precipitation method. Transforming waste materials into high-performance catalysts, this study aligns with the principles of a circular economy, addressing both environmental waste and pollution. Structural characterization by X-ray diffraction (XRD) and microscopic (FESEM and TEM) revealed the formation of well crystalline nano ferrite with NiFeO nanoparticles with cubic spinel structure.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2025
Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland.
A new strategy has been developed to successfully produce the active component danshensu ex vivo. For this purpose, phenylalanine dehydrogenase from Bacillus sphaericus was combined with the novel hydroxyphenylpyruvate reductase from Mentha x piperita, thereby providing an in situ cofactor regeneration throughout the conversion process. The purified enzymes were co-immobilized and subsequently employed in batch biotransformation, resulting in 60% conversion of 10 mM L-dopa within 24 h, with a catalytic amount of NAD as cofactor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!