This study proposed a novel approach for quantitative evaluation of the physicochemical interactions between a particle and rough surface. The approach adopts the composite Simpson's rule to numerically calculate the double integrals in the surface element integration of these physicochemical interactions. The calculation could be achieved by a MATLAB program based on this approach. This approach was then applied to assess the physicochemical interactions between rough membrane surface and sludge foulants in a submerged membrane bioreactor (MBR). The results showed that, as compared with smooth membrane surface, rough membrane surface had a much lower strength of interactions with sludge foulants. Meanwhile, membrane surface morphology significantly affected the strength and properties of the interactions. This study showed that the newly developed approach was feasible, and could serve as a primary tool for investigating membrane fouling in MBRs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2014.08.074 | DOI Listing |
ACS Nano
January 2025
BK21 Program, Department of Applied Life Science, Konkuk University, Chungju 27478, Republic of Korea.
The tumor-specific efficacy of the most current anticancer therapeutic agents, including antibody-drug conjugates (ADCs), oligonucleotides, and photosensitizers, is constrained by limitations such as poor cell penetration and low drug delivery. In this study, we addressed these challenges by developing, a positively charged, amphiphilic Chlorin e6 (Ce6)-conjugated, cell-penetrating anti-PD-L1 peptide nanomedicine (CPPD1) with enhanced cell and tissue permeability. The CPPD1 molecule, a bioconjugate of a hydrophobic photosensitizer and strongly positively charged programmed cell death-ligand 1 (PD-L1) binding cell-penetrating peptide (CPP), is capable of self-assembling into nanoparticles with an average size of 199 nm in aqueous solution without the need for any carriers.
View Article and Find Full Text PDFBiochem J
January 2025
Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India.
The bacterial transcription terminator Rho is a hexameric ATP-dependent RNA helicase that dislodges elongating RNA polymerases. It has an N-terminal primary RNA binding site (PBS) on each subunit and a C-terminal secondary RNA binding site at the central channel. Here, we show that Rho also binds to linear longer double-stranded DNAs (dsDNA) and the circular plasmids non-specifically using its PBS.
View Article and Find Full Text PDFJ Bioenerg Biomembr
January 2025
Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyamacho, Toyonaka, Osaka, 560-8531, Japan.
Fibrillation of the amyloid beta (Aβ) peptide has often been associated with neurodegenerative pathologies such as Alzheimer's disease. In this study we examined the influence of several potential compositions of the lipid membrane on Aβ fibrillation by using liposomes as a basic model membrane. Firstly, it was revealed that Aβ fibrillation kinetics were enhanced and had the potential to occur at a faster rate on more fluid membranes compared to solid membranes.
View Article and Find Full Text PDFNanomicro Lett
January 2025
College of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, People's Republic of China.
Solar-driven interfacial evaporation is one of the most attractive approaches to addressing the global freshwater shortage. However, achieving an integrated high evaporation rate, salt harvesting, and multifunctionality in evaporator is still a crucial challenge. Here, a novel composite membrane with biomimetic micro-nanostructured superhydrophobic surface is designed via ultrafast laser etching technology.
View Article and Find Full Text PDFBiomol Biomed
December 2024
Department of Stomatology, Tianjin First Central Hospital, Nankai District, Tianjin, China.
Human periodontal ligament stem cells (hPDLSCs) play a critical role in the regeneration of periodontal tissue. Forkhead box protein A1 (FOXA1) has been implicated in the inflammatory mechanisms of various diseases. However, the role of FOXA1 in periodontal inflammation and its effect on the osteogenic differentiation of hPDLSCs remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!