AI Article Synopsis

  • Ena/VASP proteins and the WAVE regulatory complex (WRC) work together to enhance actin polymerization, which is crucial for cell motility.
  • Their interaction, specifically between the Ena/VASP EVH1 domain and a proline-rich motif in Abi, boosts cell migration by promoting Arp2/3 complex-mediated actin assembly when Rac is present.
  • Disruption of this interaction in Drosophila macrophages leads to impaired lamellipodia formation and other developmental defects, highlighting the importance of the Ena-Abi partnership in cellular processes like axon targeting and oogenesis.

Article Abstract

Ena/VASP proteins and the WAVE regulatory complex (WRC) regulate cell motility by virtue of their ability to independently promote actin polymerization. We demonstrate that Ena/VASP and the WRC control actin polymerization in a cooperative manner through the interaction of the Ena/VASP EVH1 domain with an extended proline rich motif in Abi. This interaction increases cell migration and enables VASP to cooperatively enhance WRC stimulation of Arp2/3 complex-mediated actin assembly in vitro in the presence of Rac. Loss of this interaction in Drosophila macrophages results in defects in lamellipodia formation, cell spreading, and redistribution of Ena to the tips of filopodia-like extensions. Rescue experiments of abi mutants also reveals a physiological requirement for the Abi:Ena interaction in photoreceptor axon targeting and oogenesis. Our data demonstrate that the activities of Ena/VASP and the WRC are intimately linked to ensure optimal control of actin polymerization during cell migration and development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4165403PMC
http://dx.doi.org/10.1016/j.devcel.2014.08.001DOI Listing

Publication Analysis

Top Keywords

actin polymerization
12
ena/vasp proteins
8
ena/vasp wrc
8
control actin
8
cell migration
8
ena/vasp
5
actin
5
proteins cooperate
4
cooperate wave
4
wave complex
4

Similar Publications

Assays of Platelet SNARE-actin Interactions.

Methods Mol Biol

January 2025

Division of Hemostasis and Thrombosis, Department of Medicine, BIDMC, Harvard Medical School, Boston, MA, USA.

The actin cytoskeleton serves an important, but poorly characterized, role in controlling granule exocytosis. The dynamic nature of actin remodeling allows it to act both as a barrier to prevent indiscriminate granule release and as a facilitator of membrane fusion. In its capacity to promote exocytosis, filamentous actin binds to components of the exocytotic machinery through actin binding proteins, but also through direct interactions with SNAREs.

View Article and Find Full Text PDF

Stem cells adapt to their local mechanical environment by rearranging their cytoskeleton, which underpins the evolution of their shape and fate as well as the emergence of tissue structure and function. Here, in the second part of a two-part experimental series, we aimed to elucidate spatiotemporal cytoskeletal remodeling and resulting changes in morphology and mechanical properties of cells and their nuclei. Akin to mechanical testing of the most basic living and adapting unit of life, i.

View Article and Find Full Text PDF

The core component of the actin cytoskeleton is the globular protein G-actin, which reversibly polymerizes into filaments (F-actin). Budding yeast possesses a single actin that shares 87%-89% sequence identity with vertebrate actin isoforms. Previous structural studies indicate very close overlap of main-chain backbones.

View Article and Find Full Text PDF

Balancing limited resources in actin network competition.

Curr Biol

January 2025

Cytomorpholab, Laboratoire de Physiologie Cellulaire and Végétale, Interdisciplinary Research Institute of Grenoble, University of Grenoble-Alpes, CEA, CNRS, INRA, 17 avenue des Martyrs, 38054 Grenoble, France. Electronic address:

In cells, multiple actin networks coexist in a dynamic manner. These networks compete for a common pool of actin monomers and actin-binding proteins. Interestingly, all of these networks manage to coexist despite the strong competition for resources.

View Article and Find Full Text PDF

In many plants, the asymmetric division of the zygote sets up the apical-basal body axis. In the cress , the zygote coexpresses regulators of the apical and basal embryo lineages, the transcription factors WOX2 and WRKY2/WOX8, respectively. WRKY2/WOX8 activity promotes nuclear migration, cellular polarity, and mitotic asymmetry of the zygote, which are hallmarks of axis formation in many plant species.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!