Purpose: To directly test the effectiveness of ethanol-wet bonding (EW) in improving monomer infiltration into demineralized dentin through quantitative measurement of bis-GMA and TEG-DMA molar concentrations within hybrid layers, and to comprehensively evaluate the effect of EW and chlorhexidine on durability of resin-dentin bonds compared to conventional water-wet bonding (WW).

Materials And Methods: A three-step etch-and-rinse adhesive (70% bis-GMA/28.75%TEG-DMA) was applied to coronal dentin using a clinically relevant ethanol-wet bonding protocol (EW) or the conventional water-wet bonding (WW) technique. Bis-GMA and TEG-DMA molar concentrations at various positions across the resin/dentin interfaces formed by EW and WW were measured using micro-Raman spectroscopy. The experiment was repeated at the same positions after 7-month storage in phosphate buffer solution containing 0.1% sodium azide. The μTBS and hybrid layer morphology (TEM) of bonding groups with and without chlorhexidine application were compared immediately and after 1-year storage in terms of nanoleakage, collagen fibril diameter, collagen interfibrillar width, and hybrid layer thickness.

Results: Specimens bonded with EW showed significantly higher monomer molar concentrations and μTBS throughout the hybrid layer immediately and after storage, providing direct evidence of superior infiltration of hydrophobic monomers in EW compared to WW. Microscopically, EW maintained interfibrillar width and hybrid layer thickness for resin infiltration and retention. The application of chlorhexidine further preserved collagen integrity and limited the degree of nanoleakage in EW after 1-year storage.

Conclusion: EW enhances infiltration of hydrophobic monomers into demineralized dentin. The results suggest that a more durable resin-dentin bond may be achieved with combined usage of a clinically relevant EW and chlorhexidine.

Download full-text PDF

Source
http://dx.doi.org/10.3290/j.jad.a32695DOI Listing

Publication Analysis

Top Keywords

hybrid layer
16
ethanol-wet bonding
12
molar concentrations
12
resin-dentin bond
8
demineralized dentin
8
bis-gma teg-dma
8
teg-dma molar
8
conventional water-wet
8
water-wet bonding
8
clinically relevant
8

Similar Publications

Multi task opinion enhanced hybrid BERT model for mental health analysis.

Sci Rep

January 2025

Department of Computer Science, College of Computer and Information Sciences, King Saud University, 11543, Riyadh, Saudi Arabia.

Understanding the nuanced emotions and points of view included in user-generated content remains challenging, even though text data analysis for mental health is a crucial instrument for assessing emotional well-being. Most current models neglect the significance of integrating viewpoints in comprehending mental health in favor of single-task learning. To offer a more thorough knowledge of mental health, in this study, we present an Opinion-Enhanced Hybrid BERT Model (Opinion-BERT), built to handle multi-task learning for simultaneous sentiment and status categorization.

View Article and Find Full Text PDF

This work studies the generation of the orbital angular momentum (OAM) beam in the double quantum dot-metal nanoparticle (DQD-MNP) system under the application of the OAM beam. First, an analytical model is derived to attain the relations of probe and generated fields as a distance function in the DQD-MNP system under OAM applied field and spontaneously generated coherence (SGC) components. The calculation here is of material property; it differs from others by calculating energy states of the DQDs and the computation of the transition momenta between quantum dot (QD)-QD and QD-wetting layer (WL) transitions.

View Article and Find Full Text PDF

Constructing an Organic-Inorganic Hybrid Solid-Electrolyte Interface In Situ via an Organo-Polysulfide Electrolyte Additive for Lithium-Sulfur Batteries.

ACS Appl Mater Interfaces

January 2025

School of Material Science and Engineering, Jiangsu Collaborative Innovation Center for Photovoltaic Science and Engineering, Jiangsu Province Cultivation Base for State Key Laboratory of Photovoltaic Science and Technology, Changzhou University, Changzhou 213164, China.

Lithium (Li) metal's extremely high specific energy and low potential make it critical for high-performance batteries. However, uncontrolled dendrite growth and an unstable solid-electrolyte interphase (SEI) during repeated cycling still seriously hinder its practical application in Li metal batteries. Herein, we demonstrate a facile and effective approach to fabricate a flexible and robust hybrid SEI layer using two kinds of organo-polysulfides with different sulfur chain lengths [bis(3-(triethoxysilyl)propyl)disulfide (Si-O-2S) and bis(3-(triethoxysilyl)propyl)tetrasulfide (Si-O-4S)] as the additives in the electrolyte.

View Article and Find Full Text PDF

Context: The flow equations are derived for describing the two-dimensional hybrid molecular-scale and continuum flows in the very small surface separation with inhomogeneous solid surfaces and they can be applied for designing the specific bearings. The aim of the present study is to solve this specific flow problem in engineering with normal computational cost. The flow factor approach model describes the flow of the molecule layer adjacent to the solid surface and the Newtonian fluid model describes the flow of the intermediate continuum fluid.

View Article and Find Full Text PDF

Layered Double Hydroxide Nanosheets Incorporated Hierarchical Hydrogen Bonding Polymer Networks for Transparent and Fire-Proof Ceramizable Coatings.

Nanomicro Lett

January 2025

Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials, Xiamen University, Xiamen, 361000, People's Republic of China.

In recent decades, annual urban fire incidents, including those involving ancient wooden buildings burned, transportation, and solar panels, have increased, leading to significant loss of human life and property. Addressing this issue without altering the surface morphology or interfering with optical behavior of flammable materials poses a substantial challenge. Herein, we present a transparent, low thickness, ceramifiable nanosystem coating composed of a highly adhesive base (poly(SSS-co-HEMA)), nanoscale layered double hydroxide sheets as ceramic precursors, and supramolecular melamine di-borate as an accelerator.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!