Premise Of The Study: Fourteen genomic microsatellite markers were developed and characterized in honey locust, Gleditsia triacanthos, using Illumina sequencing. Due to their high variability, these markers can be applied in analyses of genetic diversity and structure, and in mating system and gene flow studies. •

Methods And Results: Thirty-six individuals from across the species range were included in a genetic diversity analysis and yielded three to 20 alleles per locus. Observed heterozygosity and expected heterozygosity ranged from 0.214 to 0.944 and from 0.400 to 0.934, respectively, with minimal occurrence of null alleles. Regular segregation of maternal alleles was observed at seven loci and moderate segregation distortion at four of 11 loci that were heterozygous in the seed parent. •

Conclusions: Honey locust is an important agroforestry tree capable of very fast growth and tolerance of poor site conditions. This is the first report of genomic microsatellites for this species.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4103117PMC
http://dx.doi.org/10.3732/apps.1300050DOI Listing

Publication Analysis

Top Keywords

genomic microsatellites
8
gleditsia triacanthos
8
illumina sequencing
8
honey locust
8
genetic diversity
8
development genomic
4
microsatellites gleditsia
4
triacanthos fabaceae
4
fabaceae illumina
4
sequencing premise
4

Similar Publications

Reproductive strategies in loggerhead sea turtle : polyandry and polygyny in a Southwest Atlantic rookery.

PeerJ

January 2025

Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Laboratório de Genética e Evolução Molecular, Vitória, Espírito Santo, Brazil.

Sea turtles are highly migratory and predominantly inhabit oceanic environments, which poses significant challenges to the study of their life cycles. Research has traditionally focused on nesting females, utilizing nest counts and mark-recapture methods, while male behavior remains understudied. To address this gap, previous studies have analyzed the genotypes of females and hatchlings to indirectly infer male genotypes and evaluate the extent of multiple paternity within populations.

View Article and Find Full Text PDF

Background: Predicting response to targeted cancer therapies increasingly relies on both simple and complex genetic biomarkers. Comprehensive genomic profiling using high-throughput assays must be evaluated for reproducibility and accuracy compared with existing methods.

Methods: This study is a multicenter evaluation of the Oncomine™ Comprehensive Assay Plus (OCA Plus) Pan-Cancer Research Panel for comprehensive genomic profiling of solid tumors.

View Article and Find Full Text PDF

The Hypericaceae family, comprising nine genera and over seven hundred species, includes plants traditionally used for medicinal purposes. In this study, we performed high-throughput sequencing on three species: , , and , and conducted comparative genomic analyses with related species. The chloroplast genome sizes were 152,654 bp, 122,570 bp, and 137,652 bp, respectively, with an average GC content of 37.

View Article and Find Full Text PDF

(Fragile X messenger ribonucleoprotein 1), located on the X-chromosome, encodes the multi-functional FMR1 protein (FMRP), critical to brain development and function. Trinucleotide CGG repeat expansions at this locus cause a range of neurological disorders, collectively referred to as Fragile X-related conditions. The most well-known of these is Fragile X syndrome, a neurodevelopmental disorder associated with syndromic facial features, autism, intellectual disabilities, and seizures.

View Article and Find Full Text PDF

Background: Türkiye hosts many important fruit species due to its geographical location and ecology. Hawthorn, which is highly beneficial for human health, is one of these significant fruit species. In the present study, 125 accessions of Crataegus azarolus L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!