The aim of the present study was to investigate the effect of cyclooxygenase-2 (COX-2) silencing on the malignant biological behavior of MCF-7 breast cancer cells. COX-2 short hairpin RNA (shRNA) and unassociated sequences were synthesized and a shRNA lentiviral vector was constructed. The vector was transfected into MCF-7 breast cancer cells, in which clones with stable expression were screened out. The expression of COX-2 mRNA and protein was silenced using RNA interference (RNAi). Quantitative polymerase chain reaction, western blotting, a mononuclear cell direct cytotoxicity assay (MTT assay), a cell invasion assay and scratch tests were performed to investigate the downregulation of COX-2 mRNA and protein expression, the proliferative activity and growth rate of MCF-7 breast cancer cells, the glioblastoma multiforme (GBM) penetrating capacity, the cell movement and migratory capacity, and vascular endothelial growth factor (VEGF)-A and VEGF-C protein expression. The results revealed that the sequence-specific shRNA significantly downregulated the expression of COX-2 at the mRNA and protein levels. Furthermore, the downregulation of COX-2 expression markedly decreased the invasive and metastatic capacities of the cells, suppressed the proliferation, decreased the rate of growth, decreased the capacity of GBM penetration and migration, and decreased the protein expression of VEGF-A and VEGF-C, the two key factors that regulate tumor angiogenesis and lymphangiogenesis. In conclusion, the RNAi technique effectively silenced COX-2 gene expression and inhibited MCF-7 breast cancer cell proliferation, invasion and metastasis by decreasing VEGF-A and VEGF-C expression, which regulates tumor angiogenesis and lymphangiogenesis. Therefore, an RNAi technique that targets COX-2 presents a promising prospect for breast cancer gene therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4156213 | PMC |
http://dx.doi.org/10.3892/ol.2014.2395 | DOI Listing |
Curr Pharm Des
January 2025
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jazan University, P.O. Box 114 (Postal Code: 45142), Jazan, Kingdom of Saudi Arabia.
Aims: This study aims to identify and evaluate promising therapeutic proteins and compounds for breast cancer treatment through a comprehensive database search and molecular docking analysis.
Background: Breast cancer (BC), primarily originating from the terminal ductal-lobular unit of the breast, is the most prevalent form of cancer globally. In 2020, an estimated 2.
Adv Mater
January 2025
Department of Mechanical and Aerospace Engineering, Program of Materials Science and Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
Changes in the density and organization of fibrous biological tissues often accompany the progression of serious diseases ranging from fibrosis to neurodegenerative diseases, heart disease and cancer. However, challenges in cost, complexity, or precision faced by existing imaging methodologies and materials pose barriers to elucidating the role of tissue microstructure in disease. Here, we leverage the intrinsic optical anisotropy of the Morpho butterfly wing and introduce Morpho-Enhanced Polarized Light Microscopy (MorE-PoL), a stain- and contact-free imaging platform that enhances and quantifies the birefringent material properties of fibrous biological tissues.
View Article and Find Full Text PDFSmall
January 2025
College of Osteopathic Medicine, Liberty University, Lynchburg, VA, 24502, USA.
Using a combined top-down (i.e., operator-directed) and bottom-up (i.
View Article and Find Full Text PDFJ Pharm Policy Pract
January 2025
Clinical Pharmacy Department, King Fahad Medical City, Riyadh, Saudi Arabia.
Background: Cancer cases in the Kingdom of Saudi Arabia (KSA) have tripled in recent years. Quality of Life (QoL) measurements are crucial for healthcare professionals because they reveal important information about how patients respond to drugs and their general health. This study aimed to collect and summarise articles exploring the QoL of patients undergoing oncology treatments in KSA.
View Article and Find Full Text PDFMater Today Bio
February 2025
Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China.
Cell membrane targeting sonodynamic therapy could induce the accumulation of lipid peroxidation (LPO), drive ferroptosis, and further enhances immunogenic cell death (ICD) effects. However, ferroptosis is restrained by the ferroptosis suppressor protein 1 (FSP1) at the plasma membrane, which can catalyze the regeneration of ubiquinone (CoQ10) by using NAD(P)H to suppress the LPO accumulation. This work describes the construction of US-active nanoparticles (TiF NPs), which combinate cell-membrane targeting sonosensitizer TBT-CQi with FSP1 inhibitor (iFSP1), facilitating cell-membrane targeting sonodynamic-triggered ferroptosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!