A previously established arsenite-resistant cell line, KAS, is also resistant to a variety of anticancer drugs. In order to understand responsible molecules for the multidrug resistance phenotype of KAS cells, we examined the expressions of ATP-binding cassette (ABC) transporters and found that the ABCB6 and ABCC1/ multidrug resistance protein 1 (ABCC1/MRP1) were increased. ABCC1/MRP1 was not completely responsible for the drug resistance spectrum of KAS cells and several reports have suggested that ABCB6 is related to anticancer drug and metal resistance. We, therefore, established and examined ABCB6-expressing KB cells and ABCB6-knockdown KAS cells. ABCB6 expression enhanced resistance to 5-fluorouracil (5-FU), SN-38 and vincristine (Vcr) but not to arsenite. Conversely, down-regulation of ABCB6 in KAS cells increased the sensitivity of KAS cells to 5-FU, SN-38 and Vcr, but not to arsenite. Our findings suggest that ABCB6 is involved in 5-FU, SN-38 and Vcr resistance.

Download full-text PDF

Source

Publication Analysis

Top Keywords

kas cells
20
5-fu sn-38
16
sn-38 vincristine
8
multidrug resistance
8
vcr arsenite
8
sn-38 vcr
8
resistance
7
kas
6
cells
6
abcb6
5

Similar Publications

The non-polymorphic HLA-E molecule offers opportunities for new universal immunotherapeutic approaches to chronic infectious diseases. Chronic Hepatitis B virus (HBV) infection is driven in part by T cell dysfunction due to elevated levels of the HBV envelope (Env) protein hepatitis B surface antigen (HBsAg). Here we report the characterization of three genotypic variants of an HLA-E-binding HBsAg peptide, Env identified through bioinformatic predictions and verified by biochemical and cellular assays.

View Article and Find Full Text PDF

Spinal Muscular Atrophy (SMA) is a neuromuscular disease caused by low levels of the Survival of Motoneuron (SMN) protein. SMN interacts with and regulates the actin-binding protein profilin2a, thereby influencing actin dynamics. Dysfunctional actin dynamics caused by SMN loss disrupts neurite outgrowth, axonal pathfinding, and formation of functional synapses in neurons.

View Article and Find Full Text PDF

Epithelial Interleukin-1 Receptor-Like-1 Activation Is Contingent on Interleukin-33 Isoforms and Asthma-Related Receptor Variation.

Clin Exp Allergy

December 2024

Centre for Respiratory Research, National Institute for Health Research Nottingham Biomedical Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, UK.

Introduction: The interleukin-33/interleukin-1 receptor-like-1 (IL-33/IL1RL1) signalling pathway is implicated in asthma pathogenesis, with IL1RL1 nonsynonymous genetic polymorphisms associated with disease risk. We aimed to determine these variants' effect on IL1RL1 signalling induced by different IL33 isoforms thought to be elevated in the asthmatic airway.

Method: In a project funded by GSK plc, which has developed an IL-33 receptor inhibitor for asthma treatment, human embryonic kidney 293 (HEK293) cells expressing secreted embryonic alkaline phosphatase (SEAP) driven by a nuclear factor kappa-beta (NF-κB) promoter, were transiently transfected with IL1RL1, containing one of four extracellular and Toll/interleukin 1 receptor (TIR) domain haplotypes.

View Article and Find Full Text PDF

Atomic vacancies of molybdenum disulfide nanoparticles stimulate mitochondrial biogenesis.

Nat Commun

September 2024

Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, USA.

Diminished mitochondrial function underlies many rare inborn errors of energy metabolism and contributes to more common age-associated metabolic and neurodegenerative disorders. Thus, boosting mitochondrial biogenesis has been proposed as a potential therapeutic approach for these diseases; however, currently we have a limited arsenal of compounds that can stimulate mitochondrial function. In this study, we designed molybdenum disulfide (MoS) nanoflowers with predefined atomic vacancies that are fabricated by self-assembly of individual two-dimensional MoS nanosheets.

View Article and Find Full Text PDF

Background: Colorectal cancer is the third most common tumour entity in the world and up to 50% of the patients develop liver metastases (CRLM) within five years. To improve and personalize therapeutic strategies, new diagnostic tools are urgently needed. For instance, biomechanical tumour properties measured by magnetic resonance elastography (MRE) could be implemented as such a diagnostic tool.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!