Evolutionary conserved function of barley and Arabidopsis 3-KETOACYL-CoA SYNTHASES in providing wax signals for germination of powdery mildew fungi.

Plant Physiol

Department of Plant Physiology, Rheinisch-Westfaelische Technische Hochschule Aachen University, D-52056 Aachen, Germany (D.W., M.J., S.U., I.J., U.S.);Institute of Biosciences and Geosciences: Plant Sciences, Juelich Plant Phenotyping Centre, Forschungszentrum Jülich GmbH, 52425 Juelich, Germany (M.J.);Ecophysiology of Plants, Institute of Cellular and Molecular Botany, University of Bonn, 53115 Bonn, Germany (R.B.F., L.S.);Plant Reproductive Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, 06466 Stadt Seeland/OT Gatersleben, Germany (G.H., J.K.);Institute of Agricultural and Nutritional Sciences, Chair of Plant Breeding, Martin Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany (W.W., K.P.); Cereals Biotechnology,KWS LOCHOW GMBH, 37574 Einbeck, Germany (V.K.); andFormulation Technology, Bayer CropScience AG, 40789 Manheim, Germany (R.P.)

Published: November 2014

For plant pathogenic fungi, such as powdery mildews, that survive only on a limited number of host plant species, it is a matter of vital importance that their spores sense that they landed on the right spot to initiate germination as quickly as possible. We investigated a barley (Hordeum vulgare) mutant with reduced epicuticular leaf waxes on which spores of adapted and nonadapted powdery mildew fungi showed reduced germination. The barley gene responsible for the mutant wax phenotype was cloned in a forward genetic screen and identified to encode a 3-KETOACYL-CoA SYNTHASE (HvKCS6), a protein participating in fatty acid elongation and required for synthesis of epicuticular waxes. Gas chromatography-mass spectrometry analysis revealed that the mutant has significantly fewer aliphatic wax constituents with a chain length above C-24. Complementation of the mutant restored wild-type wax and overcame germination penalty, indicating that wax constituents less present on the mutant are a crucial clue for spore germination. Investigation of Arabidopsis (Arabidopsis thaliana) transgenic plants with sense silencing of Arabidopsis REQUIRED FOR CUTICULAR WAX PRODUCTION1, the HvKCS6 ortholog, revealed the same germination phenotype against adapted and nonadapted powdery mildew fungi. Our findings hint to an evolutionary conserved mechanism for sensing of plant surfaces among distantly related powdery mildews that is based on KCS6-derived wax components. Perception of such a signal must have been evolved before the monocot-dicot split took place approximately 150 million years ago.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4226380PMC
http://dx.doi.org/10.1104/pp.114.246348DOI Listing

Publication Analysis

Top Keywords

powdery mildew
12
mildew fungi
12
evolutionary conserved
8
powdery mildews
8
adapted nonadapted
8
nonadapted powdery
8
wax constituents
8
wax
7
germination
6
powdery
5

Similar Publications

The Exocyst Subunits EqSec5 and EqSec6 Promote Powdery Mildew Fungus Growth and Pathogenicity.

J Fungi (Basel)

January 2025

Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Haikou 570228, China.

The exocyst complex in eukaryotic cells modulates secretory vesicle transportation to promote exocytosis. The exocyst is also required for the hyphal growth and pathogenic development of several filamentous phytopathogens. Obligate biotrophic powdery mildew fungi cause considerable damage to many cash crops; however, the exocyst's roles in this group of fungi is not well studied.

View Article and Find Full Text PDF

Rosa laevigata is an excellent rose germplasm, highly resistant to aphid, and immune to both rose black spot and powdery mildew disease. It is also a well-known edible plant with a long history of medicinal use in China, having the effects of improving kidney function, inhibiting arteriosclerosis, and reducing inflammation. In this study, we assembled a high-quality chromosome-scale genome for R.

View Article and Find Full Text PDF

The wheat NLR pair RXL/Pm5e confers resistance to powdery mildew.

Plant Biotechnol J

January 2025

Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.

Powdery mildew poses a significant threat to global wheat production and most cloned and deployed resistance genes for wheat breeding encode nucleotide-binding and leucine-rich repeat (NLR) immune receptors. Although two genetically linked NLRs function together as an NLR pair have been reported in other species, this phenomenon has been relatively less studied in wheat. Here, we demonstrate that two tightly linked NLR genes, RXL and Pm5e, arranged in a head-to-head orientation, function together as an NLR pair to mediate powdery mildew resistance in wheat.

View Article and Find Full Text PDF

Plants deploy cell-surface pattern recognition receptors (PRRs) and intracellular nucleotide-binding site-leucine-rich repeat receptors (NLRs) to recognize pathogens. However, how plant immune receptor repertoires evolve in responding to changed pathogen burdens remains elusive. Here we reveal the convergent reduction of NLR repertoires in plants with diverse special lifestyles/habitats (SLHs) encountering low pathogen burdens.

View Article and Find Full Text PDF

Powdery mildew, caused by the fungus , is one of the primary causes of grape yield loss across the globe. While numerous resistance loci have been identified in various grapevine species, the genetic determinants of susceptibility to remain largely unexplored. Understanding the genetics of susceptibility for pathogenesis is equally important for developing durable resistance grapevines against this pathogen.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!