A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Improved implant osseointegration of a nanostructured titanium surface via mediation of macrophage polarization. | LitMetric

Improved implant osseointegration of a nanostructured titanium surface via mediation of macrophage polarization.

Biomaterials

State Key Laboratory of Military Stomatology, Department of Prosthetic Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, China. Electronic address:

Published: December 2014

The use of endosseous implanted materials is often limited by undesirable effects that may be due to macrophage-related inflammation. The purpose of this study was to fabricate a nanostructured surface on a titanium implant to regulate the macrophage inflammatory response and improve the performance of the implant. Anodization at 5 and 20 V as well as UV irradiation were used to generate hydrophilic, nanostructured TiO2 surfaces (denoted as NT5 and NT20, respectively). Their surface characteristics and in vivo osseointegration as well as the inflammatory response they elicit were analyzed. In addition, the behavior of macrophages in vitro was evaluated. Although the in vitro osteogenic activity on the two surfaces was similar, the NT5 surface was associated with more bone formation, less inflammation, and a reduced CD68(+) macrophage distribution in vivo compared to the NT20 and polished Ti surfaces. Consistently, further experiments revealed that the NT5 surface induced healing-associated M2 polarization in vitro and in vivo. By contrast, the NT20 surface promoted the pro-inflammatory M1 polarization, which could further impair bone regeneration. The results demonstrate the dominant role of macrophage-related inflammation in bone healing around implants and that surface nanotopography can be designed to have an immune-regulating effect in support of the success of implants.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2014.08.025DOI Listing

Publication Analysis

Top Keywords

macrophage-related inflammation
8
inflammatory response
8
nt20 surface
8
nt5 surface
8
surface
7
improved implant
4
implant osseointegration
4
osseointegration nanostructured
4
nanostructured titanium
4
titanium surface
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!