Millimeter size high quality crystals of CuGaS2 were grown by chemical vapor transport. The highly ordered chalcopyrite structure is confirmed by X-ray diffraction and Raman spectroscopy. According to energy dispersive X-ray spectroscopy the composition of the crystals is very close to the formula CuGaS2. Room temperature photoluminescence measurements indicate the presence of an emission peak at about 2.36 eV that can be related to a donor-acceptor pair transition. The electrical resistance as a function of temperature is very well described by the Mott variable range hopping mechanism. Room temperature complex impedance spectroscopy measurements were performed in the alternating current frequency range from 40 to 10(7) Hz in the dark and under normal light. According to the impedance spectroscopy data the experimental results can be well described by two circuits in series, corresponding to bulk and grain boundary contributions. An unusual positive photoresistance effect is observed in the frequency range between 3 and 30 kHz, which we suggest to be due to intrinsic defects present in the CuGaS2 crystal.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c4cp03103bDOI Listing

Publication Analysis

Top Keywords

room temperature
8
well described
8
impedance spectroscopy
8
frequency range
8
conducting behavior
4
behavior chalcopyrite-type
4
chalcopyrite-type cugas₂
4
cugas₂ crystals
4
crystals visible
4
visible light
4

Similar Publications

Van der Waals (vdWs) materials are promising candidates for hetero-integration with silicon photonics toward miniaturization and integration. VdWs materials like molybdenum telluride and black phosphorus, despite being prominent, exhibit air sensitivity, and their room temperature emissions can be significantly broadened by tens of meV. Here, a self-encapsulation strategy is developed to scalably synthesize robust 2D vdWs ErOCl with sub-meV narrow emissions at the telecom C-band.

View Article and Find Full Text PDF

Observation of Large Low-Field Magnetoresistance in Layered (NdNiO):NdO Films at High Temperatures.

Adv Mater

January 2025

State Key Laboratory for Manufacturing Systems Engineering, Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.

Large low-field magnetoresistance (LFMR, < 1 T), related to the spin-disorder scattering or spin-polarized tunneling at boundaries of polycrystalline manganates, holds considerable promise for the development of low-power and ultrafast magnetic devices. However, achieving significant LFMR typically necessitates extremely low temperatures due to diminishing spin polarization as temperature rises. To address this challenge, one strategy involves incorporating Ruddlesden-Popper structures (ABO):AO, which are layered derivatives of perovskite structure capable of potentially inducing heightened magnetic fluctuations at higher temperatures.

View Article and Find Full Text PDF

Cannabicyclol ((±)-CBL), a minor phytocannabinoid, is largely unexplored, with its biological activity previously undocumented. We studied its conversion from cannabichromene (CBC) using various acidic catalysts. Montmorillonite (K30) in chloroform at room temperature had the highest yield (60%) with minimal byproducts.

View Article and Find Full Text PDF

Human amniotic membrane (hAM) has been extensively used for several decades as a bioactive scaffold for regenerative medicine. In its cryopreserved form-one of the main storage formats-the presence of viable cells has often been questioned. Furthermore, there is little published evidence of the role of endogenous amniotic cells from cryopreserved hAM in tissue repair.

View Article and Find Full Text PDF

Dynamical Disorder in the Mesophase Ferroelectric HdabcoClO: A Machine-Learned Force Field Study.

J Phys Chem C Nanomater Interfaces

January 2025

Department of Mechanical Engineering and Technology Management, Norwegian University of Life Sciences, N-1433 AS, Norway.

Hybrid molecular ferroelectrics with orientationally disordered mesophases offer significant promise as lead-free alternatives to traditional inorganic ferroelectrics owing to properties such as room temperature ferroelectricity, low-energy synthesis, malleability, and potential for multiaxial polarization. The ferroelectric molecular salt HdabcoClO is of particular interest due to its ultrafast ferroelectric room-temperature switching. However, so far, there is limited understanding of the nature of dynamical disorder arising in these compounds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!