The GLO1 C332 (Ala111) allele confers autism vulnerability: family-based genetic association and functional correlates.

J Psychiatr Res

Unit of Child and Adolescent NeuroPsychiatry, Laboratory of Molecular Psychiatry and Neurogenetics, University "Campus Bio-Medico", Rome, Italy; Department of Experimental Neurosciences, I.R.C.C.S. "Fondazione Santa Lucia", Rome, Italy; Mafalda Luce Center for Pervasive Developmental Disorders, Milan, Italy. Electronic address:

Published: December 2014

Glyoxalase I (GLO1) is a homodimeric Zn(2+)-dependent isomerase involved in the detoxification of methylglyoxal and in limiting the formation of advanced glycation end-products (AGE). We previously found the rs4746 A332 (Glu111) allele of the GLO1 gene, which encodes for glyoxalase I, associated with "unaffected sibling" status in families with one or more children affected by Autism Spectrum Disorder (ASD). To identify and characterize this protective allele, we sequenced GLO1 exons and exon-intron junctions, detecting two additional SNPs (rs1049346, rs1130534) in linkage disequilibrium with rs4746. A family-based association study involving 385 simplex and 20 multiplex Italian families yielded a significant association with autism driven only by the rs4746 C332 (Ala111) allele itself (P < 0.05 and P < 0.001 under additive and dominant/recessive models, respectively). Glyoxalase enzymatic activity was significantly reduced both in leukocytes and in post-mortem temporocortical tissue (N = 38 and 13, respectively) of typically developing C332 allele carriers (P < 0.05 and <0.01), with no difference in Glo1 protein levels. Conversely, AGE amounts were significantly higher in the same C332 post-mortem brains (P = 0.001), with a strong negative correlation between glyoxalase activity and AGE levels (τ = -0.588, P < 0.01). Instead, 19 autistic brains show a dysregulation of the glyoxalase-AGE axis (τ = -0.209, P = 0.260), with significant blunting of glyoxalase activity and AGE amounts compared to controls (P < 0.05), and loss of rs4746 genotype effects. In summary, the GLO1 C332 (Ala111) allele confers autism vulnerability by reducing brain glyoxalase activity and enhancing AGE formation, but years after an autism diagnosis the glyoxalase-AGE axis appears profoundly disrupted, with loss of C332 allelic effects.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jpsychires.2014.07.021DOI Listing

Publication Analysis

Top Keywords

c332 ala111
8
ala111 allele
8
allele
5
glo1
4
glo1 c332
4
allele confers
4
confers autism
4
autism vulnerability
4
vulnerability family-based
4
family-based genetic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!