Splice variants of MDM2 in oncogenesis.

Subcell Biochem

Department of Biological Sciences, Hunter College, The City University of New York, 695 Park Ave, New York, NY, 10065, USA.

Published: December 2014

Many types of human cancers overexpress MDM2 protein. A common characteristic among these cancers is an associated increase in mdm2 splice variants. Provided here is a comprehensive list, based on a literature review, of over 70 mdm2 variants. These variants are grouped according to in-frame versus out-of-frame status and their potential (or ability) to be translated into isoform proteins. We describe the putative functions for these mdm2 splice variant mRNAs, as well as the mechanistic drivers associated with increased mdm2 transcription and splicing. The paradoxical signal transduction functions of the most commonly studied variants mdm2-a,-b and -c are addressed for their outcomes in the presence and absence of wild-type p53. These outcomes vary from tumor promotion to growth arrest. Finally, we present issues in the detection of endogenous MDM2 protein and how many of the antibodies commonly used to detect MDM2 do not present a full picture of the cellular representation of the isoform proteins. This review provides a focusing lens for individuals interested in learning about the complexities of mdm2 mRNAs and their protein isoforms as well as the roles MDM2 isoforms may play in cancer progression.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-94-017-9211-0_14DOI Listing

Publication Analysis

Top Keywords

mdm2
10
splice variants
8
mdm2 protein
8
mdm2 splice
8
isoform proteins
8
variants mdm2
4
mdm2 oncogenesis
4
oncogenesis types
4
types human
4
human cancers
4

Similar Publications

Stemness-associated cell states are linked to chemotherapy resistance in AML. We uncovered a direct mechanistic link between expression of the stem cell transcription factor GATA2 and drug resistance. The GATA-binding protein 2 (GATA2) plays a central role in blood stem cell generation and maintenance.

View Article and Find Full Text PDF

Citrullination at the N-terminal region of MDM2 by the PADI4 enzyme.

Protein Sci

February 2025

Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain.

PADI4 is one of the human isoforms of a family of enzymes involved in the conversion of arginine to citrulline. MDM2 is an E3 ubiquitin ligase that is critical for degradation of the tumor suppressor gene p53. We have previously shown that there is an interaction between MDM2 and PADI4 in cellulo, and that such interaction occurs through the N-terminal region of MDM2, N-MDM2, and in particular through residues Thr26, Val28, Phe91, and Lys98.

View Article and Find Full Text PDF

Peptide stapling is an effective strategy to stabilise α-helical peptides, enhancing their bioactive conformation and improving physiochemical properties. In this study, we apply our novel diyne-girder stapling approach to the MDM2/MDMX α-helical binding region of the p53 transactivation domain. By incorporation of an unnatural amino acid to create an optimal , + 7 bridge length, we developed a highly α-helical stapled peptide, 4, confirmed circular dichroism.

View Article and Find Full Text PDF

A novel approach for target deconvolution from phenotype-based screening using knowledge graph.

Sci Rep

January 2025

International Joint Research Laboratory for Perception Data Intelligent Processing of Henan, Anyang Normal University, Anyang, 455000, China.

Deconvoluting drug targets is crucial in modern drug development, yet both traditional and artificial intelligence (AI)-driven methods face challenges in terms of completeness, accuracy, and efficiency. Identifying drug targets, especially within complex systems such as the p53 pathway, remains a formidable task. The regulation of this pathway by myriad stress signals and regulatory elements adds layers of complexity to the discovery of effective p53 pathway activators.

View Article and Find Full Text PDF

The complex interaction between circadian rhythms and physiological functions is essential for maintaining human health. At the heart of this interaction lies the PERIOD proteins (PERs), pivotal to the circadian clock, influencing the timing of physiological and behavioral processes and impacting oxidative stress, immune functionality, and tumorigenesis. PER1 orchestrates the cooperation of the enzyme GPX1, modulating mitochondrial dynamics in sync with daily rhythms and oxidative stress, thus regulating the mechanisms managing energy substrates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!