Sphingosine-1-phosphate mediates COX-2 expression and PGE2 /IL-6 secretion via c-Src-dependent AP-1 activation.

J Cell Physiol

Department of Physiology and Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan.

Published: March 2015

Sphingosine-1-phosphate (S1P) has been shown to regulate cyclooxygenase-2 (COX-2)/prostaglandin E2 (PGE2 ) expression and IL-6 secretion in various respiratory diseases. However, the mechanisms underlying S1P-induced COX-2 expression and PGE2 production in human tracheal smooth muscle cells (HTSMCs) remain unclear. Here we demonstrated that S1P markedly induced COX-2 expression. S1P also induced PGE2 and IL-6 secretion which were reduced by the inhibitors of COX-2 (NS-398 and celecoxib). Pretreatment with the inhibitor of S1PR1 (W123), S1PR3 (CAY10444), c-Src (PP1), PYK2 (PF431396), MEK1/2 (U0126), p38 MAPK (SB202190), JNK1/2 (SP600125), or AP-1 (Tanshinone IIA) and transfection with siRNA of S1PR1, S1PR3, c-Src, PYK2, p38, p42, JNK2, c-Jun, or c-Fos reduced S1P-induced COX-2 expression and PGE2 /IL-6 secretion. Moreover, S1P induced c-Src, PYK2, p42/p44 MAPK, JNK1/2, p38 MAPK, and c-Jun phosphorylation. We observed that S1P-induced p42/p44 MAPK and JNK1/2, but not p38 MAPK activation was mediated via a c-Src/PYK2-dependent pathway. S1P also enhanced c-Fos, but not c-Jun mRNA and protein expression and the AP-1 promoter activity. S1P-induced c-Fos mRNA and protein expression, c-Jun phosphorylation, and AP-1 promoter activity was reduced by W123, CAY10444, PP1, PF431396, U0126, SP600125, or SB202190. These results demonstrated that S1P-induced COX-2 expression and PGE2 /IL-6 generation was mediated through S1PR1/3/c-Src/PYK2/p42/p44 MAPK- or JNK1/2- and S1PR1/3/c-Src/p38 MAPK-dependent AP-1 activation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcp.24795DOI Listing

Publication Analysis

Top Keywords

cox-2 expression
20
expression pge2
16
pge2 /il-6
12
s1p-induced cox-2
12
p38 mapk
12
expression
8
/il-6 secretion
8
ap-1 activation
8
il-6 secretion
8
s1p induced
8

Similar Publications

Anti-inflammatory Effects of the Fucoidan from Sea Cucumber Apostichopus japonicus.

Mar Biotechnol (NY)

January 2025

College of Animal Science and Technology, Northwest A&F University, 22 Xinong Road, Yangling, Xianyang, 712100, Shaanxi, China.

Fucoidan from Apostichopus japonicus (Aj-FUC) has shown anti-inflammatory activity, whereas its mechanism was not explicated. This study investigated the anti-inflammatory potential and mechanism of the fucoidan from green and purple A. japonicus (G-FUC and P-FUC) in lipopolysaccharide (LPS)-treated RAW264.

View Article and Find Full Text PDF

Prostaglandin E2 (PGE-2) is synthesised by cyclooxygenase-2 (COX-2) and microsomal prostaglandin E synthase 1 (mPGES-1). PGE-2 exhibits pro-inflammatory properties in inflammatory conditions. However, there remains limited understanding of the COX-2/mPGES-1/PGE-2 pathway in Angiostrongylus cantonensis-induced meningoencephalitis.

View Article and Find Full Text PDF

Cyclooxygenases (COX) play a pivotal role in inflammation and are responsible for the production of prostaglandins (PGs). Two types of COXs have been identified as key biological targets for drug design: Constitutive COX-1 and inducible COX-2. Nonsteroidal anti-inflammatory drugs (NSAIDs) target COX-1, while selective COX-2 inhibitors are designed for COX-2.

View Article and Find Full Text PDF

Bromoxynil induced hepatic toxicity via dysregulating TLR4/MyD88, JAK1/STAT3 and NF-κB signaling pathways: A dose-dependent investigation.

Tissue Cell

January 2025

Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.

Bromoxynil (BML) is a toxic herbicide that is reported to cause various organ toxicities. However, there is not a single investigation conducted to elucidate the adverse impacts of BML on hepatic tissues at different dose concentrations. Therefore, the current investigation was planned to assess the deleterious effects of BML on liver against different dose concentrations.

View Article and Find Full Text PDF

Rotavirus is the most important cause of severe gastroenteritis in infants and children worldwide. This virus causes an increase in inflammatory responses by increasing cellular oxidative stress and the expression and activity of the transcription factor NF-κB and COX-2. As a result of NF-κB activation, the expression of inflammatory cytokines also increases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!