Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background/aims: Iodide efflux from thyroid cells into the follicular lumen is essential for the synthesis of thyroid hormones, however, the pathways mediating this transport have only been partially identified. A calcium-activated pathway of iodide efflux has long been recognized, but its molecular identity unknown. Anoctamin 1 (ANO1) is a calcium-activated chloride channel (CaCC), and this study aims to investigate its contribution to iodide fluxes in thyroid cells.
Methods: RT-PCR, immunohistochemistry, and live cell imaging with the fluorescent halide biosensor YFP-H148Q/I152L were used to study the expression, localization and function of ANO1 in thyroid cells.
Results: ANO1 mRNA was detected in human thyroid tissue and FRTL-5 thyrocytes, and ANO1 protein was localized to the apical membrane of follicular cells. ATP induced a transient loss of iodide from FRTL-5 cells that was dependent on the mobilization of intracellular calcium, and was inhibited by CaCC/ANO1 inhibitors and siRNA against ANO1. Calcium-activated iodide efflux was also observed in CHO cells over-expressing the Sodium Iodide Symporter (NIS) and ANO1.
Conclusion: ANO1 in thyrocytes functions as a calcium-activated channel mediating iodide efflux, and may contribute to the rapid delivery of iodide into the follicular lumen for the synthesis of thyroid hormones following activation by calcium-mobilizing stimuli.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000366313 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!