Background: Intra-cellular processes of cells at the interface to an implant surface are influenced significantly by their extra-cellular surrounding. Specifically, when growing osteoblasts on titanium surfaces with regular micro-ranged geometry, filaments are shorter, less aligned and they concentrate at the top of the geometric structures. Changes to the cytoskeleton network, i. e., its localization, alignment, orientation, and lengths of the filaments, as well as the overall concentration and distribution of key-actors are induced. For example, integrin is distributed homogeneously, whereas integrin in activated state and vinculin, both components of focal adhesions, have been found clustered on the micro-ranged geometries. Also, the concentration of Rho, an intracellular signaling protein related to focal adhesion regulation, was significantly lower.
Results: To explore whether regulations associated with the focal adhesion complex can be responsible for the changed actin filament patterns, a spatial computational model has been developed using ML-Space, a rule-based model description language, and its associated Brownian-motion-based simulator. The focus has been on the deactivation of cofilin in the vicinity of the focal adhesion complex. The results underline the importance of sensing mechanisms to support a clustering of actin filament nucleations on the micro-ranged geometries, and of intracellular diffusion processes, which lead to spatially heterogeneous distributions of active (dephosphorylated) cofilin, which in turn influences the organization of the actin network. We find, for example, that the spatial heterogeneity of key molecular actors can explain the difference in filament lengths in cells on different micro-geometries partly, but to explain the full extent, further model assumptions need to be added and experimentally validated. In particular, our findings and hypothesis referring to the role, distribution, and amount of active cofilin have still to be verified in wet-lab experiments.
Conclusion: Letting cells grow on surface structures is a possibility to shed new light on the intricate mechanisms that relate membrane and actin related dynamics in the cell. Our results demonstrate the need for declarative expressive spatial modeling approaches that allow probing different hypotheses, and the central role of the focal adhesion complex not only for nucleating actin filaments, but also for regulating possible severing agents locally.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4363941 | PMC |
http://dx.doi.org/10.1186/s12918-014-0106-2 | DOI Listing |
World J Gastroenterol
January 2025
Department of General Surgery, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300052, China.
Background: Regulator of G protein signaling (RGS) proteins participate in tumor formation and metastasis by acting on the α-subunit of heterotrimeric G proteins. The specific effect of RGS, particularly , on the progression of gastric cancer (GC) is not yet clear.
Aim: To explore the role and underlying mechanisms of action of in GC development.
Acta Pharmacol Sin
January 2025
Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.
The emergence of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) has improved the prognosis for lung cancer patients with EGFR-driven mutations. However, acquired resistance to EGFR-TKIs poses a significant challenge to the treatment. Overcoming the resistance has primarily focused on developing next-generation targeted therapies based on the molecular mechanisms of resistance or inhibiting the activation of bypass pathways to suppress or reverse the resistance.
View Article and Find Full Text PDFSoft Matter
January 2025
Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT 06510, USA.
Hydrogels are popular platforms for cell encapsulation in biomedicine and tissue engineering due to their soft, porous structures, high water content, and excellent tunability. Recent studies highlight that the timing of network formation can be just as important as mechanical properties in influencing cell morphologies. Conventionally, time-dependent properties can be achieved through multi-step processes.
View Article and Find Full Text PDFZhongguo Zhong Yao Za Zhi
December 2024
Hunan Provincial Key Laboratory of Traditional Chinese Medicine Prescription and Transformation, Hunan University of Chinese Medicine Changsha 410208, China Key Laboratory of Tumor Prevention Mechanism of Traditional Chinese Medicine,Hunan University of Chinese Medicine Changsha 410208, China Key Laboratory of Traditional Chinese Medicine Tumour in Hunan Universities, Hunan University of Chinese Medicine Changsha 410208, China College of Integrative Medicine, Hunan University of Chinese Medicine Changsha 410208, China.
Based on the focal adhesion kinase(FAK)/steroid receptor coactivator(Src)/extracellular regulated protein kinase(ERK) pathway, this study explored the effects of Xihuang Pills on angiogenesis, invasion, and metastasis in prostate cancer. Liquid chromatography-tandem mass spectrometry(LC-MS/MS) was used to analyze and identify the active ingredients of Xihuang Pills. Bioinformatics techniques, including R language and Perl programs, were employed to analyze the interactions between prostate cancer-related targets and the potential targets of Xihuang Pills.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Emory University, Chemistry, 1515 Dickey Dr., 30322, Atlanta, UNITED STATES OF AMERICA.
Genetically encoded tension sensors (GETSs) allow for quantifying forces experienced by intracellular proteins involved in mechanotransduction. The vast majority of GETSs are comprised of a FRET pair flanking an elastic "spring-like" domain that gradually extends in response to force. Because of ensemble averaging, the FRET signal generated by such analog sensors conceals forces that deviate from the average, and hence it is unknown if a subset of proteins experience greater magnitudes of force.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!