Overexpression of ABCG2 is considered a major mechanism of cancer drug resistance. Recent studies have shown that ABCG2 can regulate the switch between symmetric and asymmetric cell division in adult stem cells; however, the relationship between ABCG2 and cell division in drug-resistant cancer cells remains to be determined. In the present study, we demonstrated that ABCG2 is involved in the cell division of drug-resistant cancer cells. We first established drug-resistant H460 and A549 cell lines by repeated exposure to cisplatin and found that the expression of ABCG2 in these cell lines was significantly increased. As evidenced by PKH-26 staining, these drug-resistant cell lines favored symmetric division, which differed from the asymmetric division of the parental cells. Furthermore, we established stable ABCG2‑overexpressing and stable shRNA-ABCG2‑knockdown cell lines to evaluate the potential role of ABCG2 in cancer cell division. The results showed that overexpression of ABCG2 in A549 parental cells significantly increased the proportion of symmetric division, whereas knockdown of ABCG2 in drug-resistant A549 cells significantly increased the proportion of asymmetric division. Taken together, our findings suggest that ABCG2 is involved in the modulation of cancer drug resistance by regulating the pattern of cell division. The present study provides novel insight into the role of ABCG2 in cancer treatment resistance.

Download full-text PDF

Source
http://dx.doi.org/10.3892/or.2014.3470DOI Listing

Publication Analysis

Top Keywords

cell lines
20
cell division
20
abcg2
11
cell
11
division
9
cancer cell
8
overexpression abcg2
8
cancer drug
8
drug resistance
8
abcg2 cell
8

Similar Publications

Targeting p38γ synergistically enhances sorafenib-induced cytotoxicity in hepatocellular carcinoma.

Cell Biol Toxicol

January 2025

Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan Province, China.

Sorafenib (Sora) is a first-line treatment for patients with advanced hepatocellular carcinoma (HCC). It can significantly improve the survival rate of patients with advanced HCC, but it is prone to drug resistance during treatment, so the therapeutic effect is extremely limited. Here, we demonstrate that an elevated expression of protein kinase p38γ in hepatocellular carcinoma cells diminishes the tumor cells' sensitivity to Sora.

View Article and Find Full Text PDF

A pan-cancer analysis: predictive role of ZNF32 in cancer prognosis and immunotherapy response.

Discov Oncol

January 2025

Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.

The zinc finger protein 32 (ZNF32) has been associated with high expression in various cancers, underscoring its significant function in both cancer biology and immune response. To further elucidate the biological role of ZNF32 and identify potential immunotherapy targets in cancer, we conducted an in-depth analysis of ZNF32. We comprehensively investigated the expression of ZNF32 across tumors using diverse databases, including TCGA, CCLE, TIMER2.

View Article and Find Full Text PDF

Photothermal therapy, in which a laser is an effective tool, is a promising method for cancer treatment. Laser parameters, including power, irradiation time, type of laser radiation (continuous or chopped), and the concentration of the photothermal agent, can affect the efficiency of this method. Therefore, this study investigated and compared the effects of different laser parameters on the efficiency of photothermal treatment for cervical cancer, which is the fourth most prevalent cancer in women.

View Article and Find Full Text PDF

Crohn's disease (CD) is a chronic inflammatory bowel disease with an unknown etiology. Ubiquitination plays a significant role in the pathogenesis of CD. This study aimed to explore the functional roles of ubiquitination-related genes in CD.

View Article and Find Full Text PDF

Renal fibrosis is widely recognized as the ultimate outcome of many chronic kidney diseases. The process of epithelial-mesenchymal transition (EMT) plays a critical role in the progression of fibrosis following renal injury. UHRF1, as a critical epigenetic regulator, may play an essential role in the pathogenesis and progression of renal fibrosis and EMT.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!