This study unveils Mycobacterium smegmatis DinB2 as the founder of a clade of Y-family DNA polymerase that is naturally adept at incorporating ribonucleotides by virtue of a leucine in lieu of a canonical aromatic steric gate. DinB2 efficiently scavenges limiting dNTP and rNTP substrates in the presence of manganese. DinB2's sugar selectivity factor, gauged by rates of manganese-dependent dNMP versus rNMP addition, is 2.7- to 3.8-fold. DinB2 embeds ribonucleotides during DNA synthesis when rCTP and dCTP are at equimolar concentration. DinB2 can incorporate at least 16 consecutive ribonucleotides. In magnesium, DinB2 has a 26- to 78-fold lower affinity for rNTPs than dNTPs, but only a 2.6- to 6-fold differential in rates of deoxy versus ribo addition (kpol). Two other M. smegmatis Y-family polymerases, DinB1 and DinB3, are characterized here as template-dependent DNA polymerases that discriminate strongly against ribonucleotides, a property that, in the case of DinB1, correlates with its aromatic steric gate side chain. We speculate that the unique ability of DinB2 to utilize rNTPs might allow for DNA repair with a 'ribo patch' when dNTPs are limiting. Phylogenetic analysis reveals DinB2-like polymerases, with leucine, isoleucine or valine steric gates, in many taxa of the phylum Actinobacteria.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4176160 | PMC |
http://dx.doi.org/10.1093/nar/gku752 | DOI Listing |
J Ovarian Res
January 2025
Department of Medical Genetics, National Taiwan University Hospital, 19F, No. 8, Chung-Shan South Road, Taipei City, Taiwan.
Background: The homologous recombination deficiency (HRD) test is an important tool for identifying patients with epithelial ovarian cancer (EOC) benefit from the treatment with poly(adenosine diphosphate-ribose) polymerase inhibitor (PARPi). Using whole exome sequencing (WES)-based platform can provide information of gene mutations and HRD score; however, the clinical value of WES-based HRD test was less validated in EOC.
Methods: We enrolled 40 patients with EOC in the training cohort and 23 in the validation cohort.
BMC Pediatr
January 2025
Department of Orthodontics, University Hospital Bonn, Medical Faculty, Welschnonnenstr. 17, 53111, Bonn, Germany.
Background: Children with non-syndromic cleft lip with or without palate (CL ± P) may present alterations in dental development. The purpose of this cross-sectional study was to compare the dental age (DA) between children with and without CL ± P, and whether single nucleotide polymorphisms (SNPs) in genes encoding growth factors are associated with DA variations.
Methods: Children aged between 5 and 14 years with and without CL ± P were recruited to participate in this study.
BMC Med Genomics
January 2025
Department of Hepatobiliary Pancreatic Surgery, Shenzhen People's Hospital, No.1017 Dongmen North Road, Shenzhen, 518020, Guangdong Province, China.
Background: Gallstones, a common surgical condition globally, affect around 20% of patients. The development of gallstones is linked to abnormal cholesterol and bilirubin metabolism, reduced gallbladder function, insulin resistance, biliary infections, and genetic factors. In addition to these factors, research has shown that mucins play a role in gallstone formation.
View Article and Find Full Text PDFCell Death Discov
January 2025
Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
Besides the important pathogenic mechanisms of melanoma, including BRAF-driven and immunosuppressive microenvironment, genomic instability and abnormal DNA double-strand breaks (DSB) repair are significant driving forces for its occurrence and development. This suggests investigating novel therapeutic strategies from the synthetic lethality perspective. Poly (ADP-ribose) polymerase 4 (PARP4) is known to be a member of the PARP protein family.
View Article and Find Full Text PDFDrug Metab Dispos
January 2025
Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas. Electronic address:
In vitro models that can faithfully replicate critical aspects of kidney tubule function such as directional drug transport are in high demand in pharmacology and toxicology. Accordingly, development and validation of new models is underway. The objective of this study was to characterize physiologic and transport functions of various sources of human renal proximal tubule epithelial cells (RPTECs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!