High-altitude multi-taskers: bumble bee food plant use broadens along an altitudinal productivity gradient.

Oecologia

Division of Biological Sciences, University of Missouri, 105 Tucker Hall, Columbia, MO, 65211, USA,

Published: December 2014

We use an extensive historical data set on bumble bee host choice collected almost 50 years ago by L. W. Macior (Melanderia 15:1-59, 1974) to examine how resource partitioning by bumble bees varies over a 2,700-m altitudinal gradient at four hierarchical scales: individual, colony, species and community. Bumble bee behavior, resource overlap between castes, and plant-bumble bee networks change with altitude in accordance with tightening temporal constraints on flowering and colony growth in alpine habitats. Individual bees were more likely to collect pollen from multiple sources at high altitude. Between-caste foraging niche overlap increased with altitude. Similarly, alpine forager networks were more highly nested than either subalpine or montane networks due to increased asymmetric specialization. However, interspecific resource partitioning showed a more complex spatial pattern with low niche overlap at intermediate altitude (subalpine) compared to montane (disturbed) and alpine (unproductive) sites. Results suggest that spatial variation in interspecific resource partitioning is driven by a shift in the behavior of long-tongued bumble bees. Long-tongued bumble bees specialized in the subalpine but generalized in montane and alpine zones. Our reanalysis of Macior's data shows that bumble bee behavior varies substantially with altitude influencing plant-bumble bee interaction networks. Results imply that pollination services to alpine host plants will change dramatically as subalpine species with unique foraging strategies move upward under global warming.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00442-014-3066-8DOI Listing

Publication Analysis

Top Keywords

bumble bee
16
resource partitioning
12
bumble bees
12
bee behavior
8
plant-bumble bee
8
niche overlap
8
interspecific resource
8
long-tongued bumble
8
bumble
7
bee
6

Similar Publications

AbstractChanging climates are driving population declines in diverse animals worldwide. Winter conditions may play an important role in these declines but are often overlooked. Animals must not only survive winter but also preserve body condition, a key determinant of growing season success.

View Article and Find Full Text PDF

Leveraging Transcriptional Signatures of Diverse Stressors for Bumble Bee Conservation.

Mol Ecol

December 2024

Penn State University, Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, University Park, Pennsylvania, USA.

Organisms in nature are subjected to a variety of stressors, often simultaneously. Foremost among stressors of key pollinators are pathogens, poor nutrition and climate change. Landscape transcriptomics can be used to decipher the relative role of stressors, provided there are unique signatures of stress that can be reliably detected in field specimens.

View Article and Find Full Text PDF

Azoxystrobin hides the respiratory failure of low dose sulfoxaflor in bumble bees.

Ecotoxicol Environ Saf

December 2024

Chair of Plant Health, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia.

Pollinators are exposed to multiple pesticides during their lifetime. Various pesticides are used in agriculture and thus not all mixtures have been tested against each other and little is known about them. In this article, we investigate the impact of sulfoxaflor, a novel sulfoximine insecticide, and azoxystrobin, a widely used strobilurin fungicide, on bumble bee Bombus terrestris worker survival and physiological functions.

View Article and Find Full Text PDF

Background: The common Eastern bumble bee Bombus impatiens is native to North America and is the main commercially reared pollinator in the Americas. There has been extensive research on this species related to its social biology, applied pollination, and genetics. The genome of this species was previously sequenced using short-read technology, but recent technological advances provide an opportunity for substantial improvements.

View Article and Find Full Text PDF

Bumble bees (Bombus spp., Hymenoptera, Apidae) play a crucial role in pollinating greenhouse tomato crops. However, tomato production is constantly threatened by different invasive pests that often lead to the increased use of pesticides, with negative consequences for pollinators.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!