A push-pull strategy for managing the anthophilous Frankliniella bispinosa (Morgan) in pepper and increasing conservation biological control was evaluated. Push components of ultraviolet (UV)-reflective mulch and foliar applications of kaolin and the pull component of sunflower companion plants were evaluated in replicated field experiments in 2011 and 2012. Adult F. bispinosa rapidly colonized and reproduced in the peppers and sunflowers during early flowering, but populations declined later, as numbers of the predatory Orius insidiosus (Say) and Orius pumilio (Champion) increased in both hosts. Numbers of F. bispinosa were reduced by kaolin during early pepper flowering. Thrips numbers were increased on some of the later sample dates, apparently due to reduced predation that resulted from negative effects of kaolin and UV-reflective mulch on Orius populations. Numbers of thrips increased in peppers with companion plants during the first week of flowering each year, followed by declines in thrips numbers during the next 2 wk in 2011. There was little effect each year of the companion plants on the numbers of Orius in the pepper flowers. There was one date in 2011 and no dates in 2012 in which UV-reflective mulch or kaolin acted in concert with the presence of the companion plants to reduce thrips numbers in the main crop of pepper. Yield effects were not attributed to thrips damage. We conclude that sunflower companion plants did not act additively or synergistically with kaolin or UV-reflective mulch to reduce thrips and increase Orius populations in pepper.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1603/EN14048 | DOI Listing |
Food Chem
January 2025
State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China. Electronic address:
Lateral flow assays (LFAs) have found extensive applications in food safety and quality monitoring. Now, smartphone technology is redefining how tests are conducted at the point of use. At the same time, quick response (QR) codes enhance digital connectivity for information transmission, data collection, and response linkage.
View Article and Find Full Text PDFMolecules
December 2024
Department of Microbiology and Biomonitoring, University of Agriculture, al. A. Mickiewicza 21, 31-120 Krakow, Poland.
Insectary plants, such as sweet alyssum, coriander, and white mustard, are well known for their traits that attract beneficial insects, allowing them to protect crops from pests. The aim of the study was to analyze the compounds that are important in the antioxidant response, such as malondialdehyde, ascorbic acid, proline, total phenolics, and total flavonoids, as well as the content of elements, including macroelements (K, Mg, Na, Ca, P, and S) and heavy metals (Cd, Cu, Zn, Pb, Ni, Mn, and Fe) in broad bean plants. These plants were grown in field conditions as the main protected plant alongside a mixture of three insectary plants at different proportions of the individual components.
View Article and Find Full Text PDFFront Cell Infect Microbiol
January 2025
Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute (RKMVERI), Kolkata, India.
Amoebae, fascinatingly diverse protists, showcase a dual nature that positions them as both friends and foes in our world. These organisms, defined by their distinctive pseudopodia, span a spectrum from harmful to helpful. On the darker side, species like pose serious health risks, causing intestinal and liver diseases, while the infamous "brain-eating" leads to fatal primary amoebic meningoencephalitis (PAM), with a daunting 97% mortality rate.
View Article and Find Full Text PDFSuccessful plant growth requires plants to minimize harm from antagonists and maximize benefit from mutualists. However, these outcomes may be difficult to achieve simultaneously, since plant defenses activated in response to antagonists can compromise mutualism function, and plant resources allocated to defense may trade off with resources allocated to managing mutualists. Here, we investigate how antagonist attack affects plant ability to manage mutualists with sanctions, in which a plant rewards cooperative mutualists and/or punishes uncooperative mutualists.
View Article and Find Full Text PDFArch Insect Biochem Physiol
December 2024
Biological Control of Insects Research Laboratory, Research Park, USDA Agricultural Research Service, Columbia, Missouri, USA.
RNA interference (RNAi) is a promising technology for controlling insect pests of agriculture. This technology is mediated through the application of double-stranded RNAs (dsRNAs), which are processed within the insect cells into small interfering RNAs (siRNAs). These molecules then target and reduce the expression of the insect-specific genes that can kill or reduce the performance of the pest.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!