The transannular diphosphorus bisanthracene adduct P2A2 (A = anthracene or C14H10) was synthesized from the 7-phosphadibenzonorbornadiene Me2NPA through a synthetic sequence involving chlorophosphine ClPA (28-35%) and the tetracyclic salt [P2A2Cl][AlCl4] (65%) as isolated intermediates. P2A2 was found to transfer P2 efficiently to 1,3-cyclohexadiene (CHD), 1,3-butadiene (BD), and (C2H4)Pt(PPh3)2 to form P2(CHD)2 (>90%), P2(BD)2 (69%), and (P2)[Pt(PPh3)2]2 (47%), respectively, and was characterized by X-ray diffraction as the complex [CpMo(CO)3(P2A2)][BF4]. Experimental and computational thermodynamic activation parameters for the thermolysis of P2A2 in a solution containing different amounts of CHD (0, 4.75, and 182 equiv) have been obtained and suggest that P2A2 thermally transfers P2 to CHD through two competitive routes: (i) an associative pathway in which reactive intermediate [P2A] adds the first molecule of CHD before departure of the second anthracene, and (ii) a dissociative pathway in which [P2A] fragments to P2 and A prior to addition of CHD. Additionally, a molecular beam mass spectrometry study on the thermolysis of solid P2A2 reveals the direct detection of molecular fragments of only P2 and anthracene, thus establishing a link between solution-phase P2-transfer chemistry and production of gas-phase P2 by mild thermal activation of a molecular precursor.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja507922xDOI Listing

Publication Analysis

Top Keywords

molecular precursor
8
detection molecular
8
molecular beam
8
beam mass
8
mass spectrometry
8
molecular
5
p2a2
5
chd
5
retro diels-alder
4
diels-alder route
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!