Active monoterpene ketones isolated from Rosmarinus officinalis with fumigant and contact action against Tyrophagus putrescentiae (Schrank).

J Food Prot

Department of Bioenvironmental Chemistry and Institute of Agricultural Science and Technology, College of Agriculture and Life Sciences, Chonbuk National University, Jeonju 561-756, Republic of Korea.

Published: August 2014

The acaricidal activities of an active material derived from Rosmarinus officinalis oil and its relative monoterpene ketones were determined using fumigant and contact toxicity bioassays against Tyrophagus putrescentiae and were compared with that of a commercial acaricide (benzyl benzoate). The active component of R. officinalis oil, isolated by silica gel column chromatography and high-performance liquid chromatography, was identified as camphor, based on various spectroscopic analyses. In the fumigant toxicity bioassay, camphor (2.25 μg/cm(3)) was 5.58 times more active than benzyl benzoate (12.56 μg/cm(3)) against T. putrescentiae, followed by (+)-camphor (3.89 μg/cm(3)) and (-)-camphor (5.61 μg/cm(3)). In the contact toxicity bioassay, camphor (1.34 μg/cm(2)) was 6.74 times more toxic than benzyl benzoate (9.03 μg/cm(2)) against T. putrescentiae, followed by (+)-camphor (2.23 μg/cm(2)) and (-)-camphor (2.94 μg/cm(2)). These results indicate that camphor and its derivatives are very useful as potential control agents against stored food mites regardless of the application method.

Download full-text PDF

Source
http://dx.doi.org/10.4315/0362-028X.JFP-14-087DOI Listing

Publication Analysis

Top Keywords

benzyl benzoate
12
monoterpene ketones
8
rosmarinus officinalis
8
fumigant contact
8
tyrophagus putrescentiae
8
officinalis oil
8
contact toxicity
8
toxicity bioassay
8
bioassay camphor
8
putrescentiae +-camphor
8

Similar Publications

A nanoemulsion was fabricated from Cananga odorata essential oil (EO) and stabilized by incorporation of Tween 80 using ultrasonication. The major constituents of the EO were benzyl benzoate, linalool, and phenylmethyl ester. Differing sonication amplitude (20-60%) and time (2-10 min) were assessed for effects on nanoemulsion droplet size and polydispersity index (PI).

View Article and Find Full Text PDF

Antifungal activity of essential oils and their potential synergistic effect with amphotericin B.

Sci Rep

December 2024

State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.

Candida albicans is a common opportunistic pathogen, causing infections ranging from superficial to bloodstream infections. The limited antifungal options and rising drug resistance challenge clinical treatment. We screened 98 essential oils and identified 48 with antifungal activity against Candida albicans at 1% concentration, determining their minimum inhibitory concentrations (MIC).

View Article and Find Full Text PDF

Stiffness-related eye diseases such as keratoconus require comprehensive visualization of the complex morphological matrix changes. The aim of this study was to use three-dimensional (3D) light sheet fluorescence microscopy (LSFM) to analyze unlabeled corneal tissue samples, qualitatively visualizing changes in corneal stiffness. Isolated porcine corneal tissue samples were treated with either NaCl or 0.

View Article and Find Full Text PDF

Phytochemical investigation of the rhizomes and the leaves of led to the isolation of fourteen compounds. They consist of one undescribed dihydrobenzofuran, curcorchidihydrobenzofuran A (), two undescribed benzyl benzoate glycosides, curculigoside J () and K (), and eleven known compounds (-). The structures of the isolated compounds were elucidated by thorough analysis of spectroscopic (IR, NMR and ECD) and spectrometric (MS) data.

View Article and Find Full Text PDF

Optical clearing of invertebrates, the number of species of which is 20 times greater than that of vertebrates, is of fundamental and applied interest for neuroscience in general. Herein, the optical clearing of invertebrates to identify their morphology and neurostructure remains unrealized as of yet. Here, we report on fast (from a few seconds to minutes) and uniform whole-body optical clearing of invertebrates (bivalves, nemertines, annelids, and anomura) of any age and thickness (up to 2 cm) possessing complicated structures and integuments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!