To investigate the role of dopamine release in cognitive impairment and motor learning deficits after brain injury, different levels of traumatic brain injury (TBI) were made in rats by using fluid percussion at two different atmospheres (2 Psi and 6 Psi). Tonic and phasic bursting dopamine release and behavior tests followed at several time points. We used in vitro fast-scan cyclic voltammetry to survey dopamine release in the striatum and analyzed the rats' behavior using novel object recognition (NOR) and rotarod tests. Both tonic and bursting dopamine release were greatly depressed in the severely (6 Psi) injured group, which persisted up to 8 weeks later. However, in the 2 Psi-injured group, the suppression of bursting dopamine release occurred at 1∼2 weeks after injury, but there were no significant differences after 4 weeks. Tonic dopamine release was also diminished significantly at 1∼2 weeks after the injury; partial recovery could then be seen 4 weeks after injury. A significant deficiency in the fixed speed rotarod test and NOR test were noted in both 2 Psi and 6 Psi groups initially; however, the changes recovered in the 2 Psi group 2 weeks after injury while persisting in the 6 Psi group. In conclusion, striatal evoked dopamine release was affected by fluid percussion injury, with behavioral deficits showing differences as a function of injury severity. The severe fluid percussion injury (6 Psi) group showed more dopamine release defects, as well as cognitive and motor deficiencies. Recovery of dopamine release and improvement in behavioral impairment were better in the mild TBI group.

Download full-text PDF

Source
http://dx.doi.org/10.3727/096368914X683584DOI Listing

Publication Analysis

Top Keywords

dopamine release
40
fluid percussion
16
weeks injury
16
percussion injury
12
bursting dopamine
12
psi group
12
dopamine
10
injury
10
release
9
brain injury
8

Similar Publications

Words represent a uniquely human information channel-humans use words to express thoughts and feelings and to assign emotional valence to experience. Work from model organisms suggests that valence assignments are carried out in part by the neuromodulators dopamine, serotonin, and norepinephrine. Here, we ask whether valence signaling by these neuromodulators extends to word semantics in humans by measuring sub-second neuromodulator dynamics in the thalamus (N = 13) and anterior cingulate cortex (N = 6) of individuals evaluating positive, negative, and neutrally valenced words.

View Article and Find Full Text PDF

Background: Although most pituitary tumors are benign, functioning pituitary tumors are dangerous as they produce and deteriorate the endocrine hormones. Prolactinomas are one of these tumors that arise from lactotroph cells of the anterior pituitary, and they're about 40% of all pituitary adenomas. They secrete high levels of prolactin, which are normally inhibited by dopamine.

View Article and Find Full Text PDF

Background: 6-Nitrodopamine (6-ND) released from rat vas deferens acts an endogenous modulator of vas deferens contractility.

Objectives: To investigate whether rat isolated seminal vesicles (RISV) releases 6-ND, the mechanisms involved in the release, and the modulatory role of 6-ND on tissue contractility.

Methods: Rat seminal vesicles were removed and placed in Krebs-Henseleit's solution at 37°C for 30 min, and an aliquot was used to analyze the concentrations of 6-ND, dopamine, noradrenaline, and adrenaline by liquid chromatography with tandem mass spectrometry (LC-MS/MS).

View Article and Find Full Text PDF

Ghrelin enhances feeding by activating the growth hormone secretagogue receptor (GHSR). In the brain, GHSRs are expressed in regions responsible for regulating food motivation including the ventral tegmental area (VTA). Endogenous cannabinoids also promote food seeking behaviors through the cannabinoid receptor 1 type (CB-1Rs) in brain regions including the VTA.

View Article and Find Full Text PDF

An ammonium perchlorate (AP) composite system with double-coating encapsulation based on the interfacial polymerization behavior of dopamine (DA) in Pickering emulsions was designed to enhance the combustion performance of HTPB-based propellants. The composite system proved highly effective in mitigating the agglomeration issues associated with iron oxide nanoparticles (FeO NPs) as catalysts, with the AP exhibiting superior performance compared to the composite comprising pure FeO NPs. The results of the thermal decomposition experiments showed that the HTD temperature of AP@PDA@FeO was reduced to 318.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!