A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The accuracy and precision of two non-invasive, magnetic resonance-guided focused ultrasound-based thermal diffusivity estimation methods. | LitMetric

Purpose: The use of correct tissue thermal diffusivity values is necessary for making accurate thermal modelling predictions during magnetic resonance-guided focused ultrasound (MRgFUS) treatment planning. This study evaluates the accuracy and precision of two non-invasive thermal diffusivity estimation methods, a Gaussian temperature method and a Gaussian specific absorption rate (SAR) method.

Materials And Methods: Both methods utilise MRgFUS temperature data obtained during cooling following a short (<25 s) heating pulse. The Gaussian SAR method can also use temperatures obtained during heating. Experiments were performed at low heating levels (ΔT∼10 °C) in ex vivo pork muscle and in vivo rabbit back muscle. The non-invasive MRgFUS thermal diffusivity estimates were compared with measurements from two standard invasive methods.

Results: Both non-invasive methods accurately estimated thermal diffusivity when using MR temperature cooling data (overall ex vivo error <6%, in vivo <12%). Including heating data in the Gaussian SAR method further reduced errors (ex vivo error <2%, in vivo <3%). The significantly lower standard deviation values (p < 0.03) of the Gaussian SAR method indicated that it had better precision than the Gaussian temperature method.

Conclusions: With repeated sonications, either MR-based method could provide accurate thermal diffusivity values for MRgFUS therapies. Fitting to more data simultaneously likely made the Gaussian SAR method less susceptible to noise, and using heating data helped it converge more consistently to the FUS fitting parameters and thermal diffusivity. These effects led to the improved precision of the Gaussian SAR method.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4878146PMC
http://dx.doi.org/10.3109/02656736.2014.945497DOI Listing

Publication Analysis

Top Keywords

thermal diffusivity
12
accuracy precision
8
precision non-invasive
8
magnetic resonance-guided
8
resonance-guided focused
8
diffusivity estimation
8
estimation methods
8
non-invasive magnetic
4
focused ultrasound-based
4
thermal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!