Transplantation therapy for type I diabetes (T1D) might be improved if pancreatic stem cells were readily available for investigation. Unlike macroscopic islets, pancreatic tissue stem cells could more easily access the retroperitoneal pancreatic environment and thereby might achieve more effective pancreatic regeneration. Unfortunately, whether the adult pancreas actually contains renewing stem cells continues as a controversial issue in diabetes research. We evaluated a new method developed in our lab for expanding renewing distributed stem cells (DSCs) from adult tissues as a means to provide more evidence for adult pancreatic stem cells, and potentially advance their availability for future clinical investigation. The new method was designed to switch DSCs from asymmetric self-renewal to symmetric self-renewal, which promotes their exponential expansion in culture with reduced production of differentiated cells. Called suppression of asymmetric cell kinetics (SACK), the method uses natural purine metabolites to accomplish the self-renewal pattern shift. The SACK purine metabolites xanthine, xanthosine, and hypoxanthine were evaluated for promoting expansion of DSCs from the pancreas of adult human postmortem donors. Xanthine and xanthosine were effective for deriving both pooled and clonal populations of cells with properties indicative of human pancreatic DSCs. The expanded human cell strains had signature SACK agent-suppressible asymmetric cell kinetics, produced Ngn3+ bipotent precursors for α-cells and β-cells, and were non-tumorigenic in immunodeficient mice. Our findings support the existence of pancreatic DSCs in the adult human pancreas and indicate a potential path to increasing their availability for future clinical evaluation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4154355 | PMC |
http://dx.doi.org/10.4172/2157-7633.1000149 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!