Acid-sensing ion channels (ASICs) are widely distributed in the peripheral and central nervous system. Although they are involved in many physiological functions, the actual processes that activate ASICs remain unclear. This is particularly true for brain ASICs, which produce only a transient response to a fast drop in pH and cannot mediate sustained current. Therefore, the search for ASIC inhibitors and, especially, potentiators/activators is important. We report that NMDA receptor channel blockers with a comparatively simple structure (9-aminoacridine, memantine, IEM-2117 and IEM-1921) potentiate and/or inhibit ASICs in submillimolar concentrations. The experiments were performed using the patch clamp technique on native ASICs from rat hippocampal interneurons and recombinant ASICs of different subunit compositions expressed in CHO cells. Native ASICs were potentiated by IEM-1921 and IEM-2117, and inhibited by memantine and 9-aminoacridine. Homomeric ASIC1a were inhibited by memantine, IEM-2117 and 9-aminoacridine while IEM-1921 was ineffective. In contrast, homomeric ASIC2a were potentiated by IEM-2117, memantine and IEM-1921, whereas 9-aminoacridine was inactive. The compounds caused a complex effect on ASIC3. 9-aminoacridine and IEM-1921 potentiated the steady-state response of ASIC3 and inhibited the peak component. IEM-2117 not only potentiated ASIC3-mediated currents caused by acidification but also evoked steady-state currents at neutral pH. Our results demonstrate that, depending on the subunit composition, ASICs can be activated or inhibited by simple compounds that possess only amino group and aromatic/hydrophobic moieties. This opens up the possibility to search for new ASIC modulators among a number of endogenous ligands.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuropharm.2014.08.018DOI Listing

Publication Analysis

Top Keywords

nmda receptor
8
receptor channel
8
channel blockers
8
ion channels
8
asics
8
search asic
8
memantine iem-2117
8
native asics
8
inhibited memantine
8
9-aminoacridine iem-1921
8

Similar Publications

Objectives: Traumatic brain injury (TBI) is a significant cause of mortality and disability worldwide. TBI has been associated with factors such as oxidative stress, neuroinflammation, and apoptosis, which are believed to be mediated by the N-methyl-D-aspartate (NMDA)-type glutamate receptor. Two NMDA receptor antagonists, ketamine and memantine, have shown potential in mitigating the pathophysiological effects of TBI.

View Article and Find Full Text PDF

Background: Anti-NMDA receptor encephalitis is an autoimmune, antibody-mediated inflammatory disease of the brain characterized by the presence of IgG antibodies targeting the excitatory N-methyl-D-aspartate receptor (NMDAR). Previous research has established that the neonatal Fc receptor (FcRn) regulates the transport and circulation of immunoglobulins (IgG). Efgartigimod, an FcRn antagonist, has been shown to enhance patient outcomes by promoting IgG clearance, and it has exhibited substantial clinical efficacy and tolerability in the treatment of myasthenia gravis.

View Article and Find Full Text PDF

NMDA receptor ligands have therapeutic potential in neurological and psychiatric disorders. We designed ()-3-(5-thienyl)carboxamido-2-aminopropanoic acid derivatives with nanomolar agonist potencies at NMDA receptor subtypes (GluN12/A-D). These compounds are superagonists at GluN1/2C compared to glycine and partial to full agonists at GluN1/2A and GluN1/2D but display functional antagonism at GluN1/2B due to low agonist efficacy.

View Article and Find Full Text PDF

Chlorpyrifos (CPF) is a broad-spectrum organophosphate insecticide. Long-term exposure to low levels of CPF is associated with neurodevelopmental and neurodegenerative disorders. The mechanisms leading to these effects are still not fully understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!