Small blood vessel injury is a feature of post irradiation brain. Susceptibility weighted imaging (SWI) is a technique that exploits the magnetic properties of tissues, such as blood and iron content and is thus sensitive to hemorrhage as a marker of small vessel injury. Our purpose was to assess post irradiation brain findings using SWI. We evaluated 12 patients with follow-up MRI studies who underwent cranial irradiation for primary or metastatic tumors. From their clinical records, the latency interval, type of radiation, and total dose were established. The number and the distribution of "black dots" on SWI were analyzed. We also compared the findings on SWI with those seen on other MRI sequences. In all patients, black dots were clearly identified on SWI, while on conventional MRI (T2 and FLAIR) none were visible. Two patients with glial tumors received radiation with fields conforming to tumor beds, while all other patients received whole brain irradiation or craniospinal radiation. The total radiation doses ranged from 45-54 Gy. Latency interval between the time of irradiation and time of detection of the black dots was four to 60 months (mean, 31 months). In ten patients diffuse black dots were observed and in two patients these were located in the irradiated field. Black dots occurred in the cerebrum, cerebellum, and choroid plexuses. None of these dots showed enhancement. Follow-up in four patients showed that the numbers of these black dots had increased. Black dots were not present before radiation in any patient. Radiation-related black dots are an effect of cranial irradiation and may be related to small vessel damage. SWI is a sensitive technique for evaluation of these black dots.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4236872 | PMC |
http://dx.doi.org/10.15274/NRJ-2014-10071 | DOI Listing |
J Control Release
January 2025
State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China; NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, PR China. Electronic address:
The metastasis and recurrence of cancer post-surgery remain the major reasons for treatment failures. Herein, a photo-immune nanoparticle decorating with M1 macrophage membrane (BD@LM) is designed based on the inflammatory environment after surgical resection. By loading photosensitizer black phosphorus quantum dots (BPQDs) and chemotherapeutics doxorubicin (DOX) in BD@LM nanoparticles, an effective chemophototherapy-mediated immunogenic cell death of tumor cells is triggered, subsequently leading to the maturation of dendritic cells for further immune cascade.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Microbiology (Biocenter 1, Viikinkaari 9), Faculty of Agriculture and Forestry, University of Helsinki, Finland.
The white rot fungus was investigated for its ability to decolorize the reactive textile dye Reactive Black 5 (RB5) that was co-exposed to CdCl and quantum dots (QDs) consisting of a CdTe core capped with two different hydrophilic organic ligands (NAC and MPA). Without co-exposure, completely decolorizes RB5 within 9 days. The highest inhibitory effect was found for soluble CdCl with an EC of 583 μg l, followed by MPA-QDs (10,628 μg l) and NAC-QDs (17,575 μg l).
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing, 211198, P. R. China.
Violet phosphorus (VP) is a phosphorus allotrope first discovered by Hittorf in 1865, which has aroused more attention in the biomedical field in recent years attributed to its gradually discovered unique properties. VP can be further categorized into bulk VP, VP nanosheets (VPNs), and VP quantum dots (VPQDs), and chemical vapor transport (CVT), liquid-phase/mechanical/laser exfoliation, and solvothermal synthesis are the common preparation approaches of bulk VP, VPNs, and VPQDs, respectively. Compared with another phosphorus allotrope (black phosphorus, BP) that is once highly regarded in biomedical applications, VP nanomaterial (namely VPNs and VPQDs) not only exhibits tunable bandgap, moderate on/off current ratio, and good biodegradability, but shows enhanced stability and biosafety as well, allowing it to be a promising candidate for a variety of biomedical applications like antibacterial therapy, anticancer therapy, and biosensing and disease diagnosis.
View Article and Find Full Text PDFBMC Cancer
January 2025
Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska Street, Kyiv, 01601, Ukraine.
Background: nowadays, the photoacoustic imaging is in the mainstream of cancer theranostics. In this study the nanoparticles with previously proven photoacoustic imaging properties, i.e.
View Article and Find Full Text PDFDermatol Ther (Heidelb)
January 2025
Department of Dermatology, Institute of Medical Sciences, Medical College of Rzeszow University, Rzeszow, Poland.
Introduction: Ultraviolet-induced fluorescence dermoscopy (UVFD) is increasingly utilized in dermatooncology and general dermatology. The objective of the study was to characterize the ultraviolet-induced fluorescence trichoscopy (UVFT) findings in a wide range of hair and scalp conditions.
Methods: Consecutive patients with non-scarring alopecias (alopecia areata, AA, n = 40; androgenetic alopecia, AGA, n = 40), scarring alopecias (frontal fibrosing alopecia, FFA, n = 20; lichen planopilaris, LPP, n = 20; folliculitis decalvans, FD, n = 14; discoid lupus erythematosus, DLE, n = 23), and inflammatory scalp conditions (psoriasis, n = 30; seborrheic dermatitis, n = 14) were included.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!