Growth Arrest-Specific 5 (GAS5) is known to negatively regulate cell survival and is aberrantly expressed in several cancers. The influence of GAS5 on osteoarthritis (OA) has not been determined. To address this, articular chondrocytes were isolated from relatively normal (Non-OA) and clear OA regions (OA) of cartilage in total knee replacement (TKR) patients and biopsied normal cartilage. We found that GAS5 was up-regulated in OA chondrocytes compared with Non-OA and normal chondrocytes. The over-expression of GAS5 increased the expression levels of several MMPs, such as MMP-2, MMP-3, MMP-9, MMP-13, and ADAMTS-4; stimulated apoptosis; and suppressed autophagic responses. Furthermore, we subsequently identified miR-21 as a regulator of GAS5 during OA pathogenesis. The expression level of miR-21 was significantly reduced in OA patients, and the ectopic expression of GAS5 is capable of suppressing miR-21 induction. Consistent with GAS5 experiments, the introduction of miR-21 stimulated the apoptosis of chondrocytes and inhibited the expression levels of autophagic complexes, including LC-3B. In vivo, we found that the introduction of miR-21 into the cartilage of OA mice significantly stimulated cartilage destruction. Together, these results show that GAS5 contributes to the pathogenesis of OA by acting as a negative regulator of miR-21 and thereby regulating cell survival.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jor.22718DOI Listing

Publication Analysis

Top Keywords

gas5
9
cell survival
8
expression levels
8
stimulated apoptosis
8
introduction mir-21
8
mir-21
7
long non-coding
4
non-coding rna
4
rna gas5
4
gas5 plays
4

Similar Publications

The precise role of lncRNAs in skeletal muscle development and atrophy remain elusive. We conducted a bioinformatic analysis of 26 GEO datasets from mouse studies, encompassing embryonic development, postnatal growth, regeneration, cell proliferation, and differentiation, using R and relevant packages (limma et al.).

View Article and Find Full Text PDF

Objective: The present study was implemented to unravel the effect of lncRNA GAS5 on renal fibrosis induced by diabetic nephropathy (DN) by regulating the miR-542-3p/ERBB4 axis.

Methods: db/db mice were injected with lncRNA GAS5 high expression or miR-542-3p low expression related vectors. Biochemical experiments were performed to assess blood glucose level and urine protein concentration.

View Article and Find Full Text PDF

Rheumatoid arthritis (RA) is a chronic autoimmune disorder associated with an increased risk of cardiovascular disease (CVD), largely driven by peripheral endothelial dysfunction (ED). Humanin, a mitochondrial-derived peptide, has been suggested to play a protective role in endothelial function. However, the relationship between Humanin levels and ED in RA, as well as the interaction between Humanin and non-coding RNAs such as Long Non-Coding RNA GAS5, microRNA-21 (miR-21), and microRNA-103 (miR-103), remains unclear.

View Article and Find Full Text PDF

analysis of lncRNA-miRNA-mRNA signatures related to Sorafenib effectiveness in liver cancer cells.

World J Gastroenterol

January 2025

Department of Oncology Surgery, Cell Therapy and Organ Transplantation, Institute of Biomedicine of Seville, Virgen del Rocio University Hospital, Seville 41013, Spain.

Background: Hepatocellular carcinoma (HCC) is the most common subtype of primary liver cancer with varied incidence and epidemiology worldwide. Sorafenib is still a recommended treatment for a large proportion of patients with advanced HCC. Different patterns of treatment responsiveness have been identified in differentiated hepatoblastoma HepG2 cells and metastatic HCC SNU449 cells.

View Article and Find Full Text PDF

Long noncoding RNA (lncRNA) are essential for modulating the onset and progression of alcohol use disorder (AUD). In this study, we investigated the molecular pathways through which lncRNA may contribute to AUD development. We assessed the expression levels of long noncoding RNA GAS5 (lncRNA GAS5) and microRNA-136-5p (miR-136-5p) in AUD tissue samples and cell lines using reverse transcription-quantitative polymerase chain reaction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!