Background: Cardiovascular Magnetic Resonance myocardial feature tracking (CMR-FT) is a quantitative technique tracking tissue voxel motion on standard steady-state free precession (SSFP) cine images to assess ventricular myocardial deformation. The importance of left atrial (LA) deformation assessment is increasingly recognized and can be assessed with echocardiographic speckle tracking. However atrial deformation quantification has never previously been demonstrated with CMR. We sought to determine the feasibility and reproducibility of CMR-FT for quantitative derivation of LA strain and strain rate (SR) myocardial mechanics.

Methods: 10 healthy volunteers, 10 patients with hypertrophic cardiomyopathy (HCM) and 10 patients with heart failure and preserved ejection fraction (HFpEF) were studied at 1.5 Tesla. LA longitudinal strain and SR parameters were derived from SSFP cine images using dedicated CMR-FT software (2D CPA MR, TomTec, Germany). LA performance was analyzed using 4- and 2-chamber views including LA reservoir function (total strain [εs], peak positive SR [SRs]), LA conduit function (passive strain [εe], peak early negative SR [SRe]) and LA booster pump function (active strain [εa], late peak negative SR [SRa]).

Results: In all subjects LA strain and SR parameters could be derived from SSFP images. There was impaired LA reservoir function in HCM and HFpEF (εs [%]: HCM 22.1 ± 5.5, HFpEF 16.3 ± 5.8, Controls 29.1 ± 5.3, p < 0.01; SRs [s⁻¹]: HCM 0.9 ± 0.2, HFpEF 0.8 ± 0.3, Controls 1.1 ± 0.2, p < 0.05) and impaired LA conduit function as compared to healthy controls (εe [%]: HCM 10.4 ± 3.9, HFpEF 11.9 ± 4.0, Controls 21.3 ± 5.1, p < 0.001; SRe [s]⁻¹: HCM -0.5 ± 0.2, HFpEF -0.6 ± 0.1, Controls -1.0 ± 0.3, p < 0.01). LA booster pump function was increased in HCM while decreased in HFpEF (εa [%]: HCM 11.7 ± 4.0, HFpEF 4.5 ± 2.9, Controls 7.8 ± 2.5, p < 0.01; SRa [s⁻¹]: HCM -1.2 ± 0.4, HFpEF -0.5 ± 0.2, Controls -0.9 ± 0.3, p < 0.01). Observer variability was excellent for all strain and SR parameters on an intra- and inter-observer level as determined by Bland-Altman, coefficient of variation and intraclass correlation coefficient analyses.

Conclusions: CMR-FT based atrial performance analysis reliably quantifies LA longitudinal strain and SR from standard SSFP cine images and discriminates between patients with impaired left ventricular relaxation and healthy controls. CMR-FT derived atrial deformation quantification seems a promising novel approach for the study of atrial performance and physiology in health and disease states.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4422260PMC
http://dx.doi.org/10.1186/s12968-014-0060-6DOI Listing

Publication Analysis

Top Keywords

strain
9
left atrial
8
strain strain
8
strain rate
8
cardiovascular magnetic
8
magnetic resonance
8
resonance myocardial
8
myocardial feature
8
feature tracking
8
cmr-ft quantitative
8

Similar Publications

Characteristics and long-term health outcomes of the first domestic COVID-19 outbreak cases in Da Nang, Vietnam: a longitudinal cohort study.

Trop Med Health

January 2025

Department of Paediatric Infectious Diseases, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.

Background: Vietnam experienced the first COVID-19 domestic outbreak due to the Wuhan strain (B.1.1) in Da Nang from July 2020.

View Article and Find Full Text PDF

Background: While aiming to optimize patient value, the shift towards Value-Based Health Care (VBHC) in hospitals worldwide has been argued to benefit healthcare professionals as well. However, robust evidence regarding VBHC's workforce implications is lacking. This gap is problematic, as the motivation and health of healthcare professionals are central to the quality of care and crucial amidst contemporary workforce challenges.

View Article and Find Full Text PDF

Extensive anthropogenic activity has led to the accumulation of organic and inorganic contaminants in diverse ecosystems, which presents significant challenges for the environment and its inhabitants. Utilizing microalgae as a bioremediation tool can present a potential solution to these challenges. Microalgae have gained significant attention as a promising biotechnological solution for detoxifying environmental pollutants.

View Article and Find Full Text PDF

Genetic diversity atlas of Brucella melitensis strains from Sichuan Province, China.

BMC Microbiol

January 2025

National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.

Human brucellosis is a re-emerging disease in Sichuan Province, China. In this study, bacteriology, conventional bio-typing, multi-locus sequence typing (MLST), and multiple locus variable-number tandem repeat analysis (MLVA) were applied to preliminarily characterize the strains in terms of genetic diversity and epidemiological links. A total of 101 Brucella strains were isolated from 16 cities (autonomous prefectures) from 2014 to 2021, and all of the strains were identified as Brucella melitensis bv.

View Article and Find Full Text PDF

An introduction to MyBFF@school, a school-based childhood obesity intervention program: a cluster randomized controlled trial.

BMC Public Health

January 2025

Department of Pediatrics, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur, 50603, Malaysia.

Obesity trend among Malaysian children is on the rise. Noting that the tendency for them to grow into obese adults and the relationship of obesity to many non-communicable diseases, the My Body is Fit and Fabulous at School (MyBFF@school program) was designed to combat obesity among the schoolchildren. The program was piloted in 2014 in Putrajaya, Malaysia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!