Selective formation of metastable ferrihydrite in the chiton tooth.

Angew Chem Int Ed Engl

Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL 60201 (USA).

Published: October 2014

Metastable precursors are thought to play a major role in the ability of organisms to create mineralized tissues. Of particular interest are the hard and abrasion-resistant teeth formed by chitons, a class of rock-grazing mollusks. The formation of chiton teeth relies on the precipitation of metastable ferrihydrite (Fh) in an organic scaffold as a precursor to magnetite. In vitro synthesis of Fh under physiological conditions has been challenging. Using a combination of X-ray absorption and electron paramagnetic resonance spectroscopy, we show that, prior to Fh formation in the chiton tooth, iron ions are complexed by the organic matrix. In vitro experiments demonstrate that such complexes facilitate the formation of Fh under physiological conditions. These results indicate that acidic molecules may be integral to controlling Fh formation in the chiton tooth. This biological approach to polymorph selection is not limited to specialized proteins and can be expropriated using simple chemistry.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.201406131DOI Listing

Publication Analysis

Top Keywords

chiton tooth
12
formation chiton
12
metastable ferrihydrite
8
physiological conditions
8
selective formation
4
formation metastable
4
chiton
4
ferrihydrite chiton
4
tooth metastable
4
metastable precursors
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!