Glutathione S-transferase 1 from Necator americanus (Na-GST-1) is a vaccine candidate for hookworm infection that has a high affinity for heme and metal porphyrins. As part of attempts to clarify the mechanism of heme detoxification by hookworm GSTs, co-crystallization and soaking studies of Na-GST-1 with the heme-like molecules protoporphyrin IX disodium salt, hematin and zinc protoporphyrin were undertaken. While these studies did not yield the structure of the complex of Na-GST-1 with any of these molecules, co-crystallization experiments resulted in the first structures of the complex of Na-GST-1 with the substrate glutathione. The structures of the complex of Na-GST-1 with glutathione were solved from pathological crystalline aggregates comprising more than one crystal form. These first structures of the complex of Na-GST-1 with the substrate glutathione were solved by molecular replacement from data collected with a sealed-tube home source using the previously reported apo structure as the search model.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4157412PMC
http://dx.doi.org/10.1107/S2053230X1401646XDOI Listing

Publication Analysis

Top Keywords

complex na-gst-1
16
structures complex
12
glutathione s-transferase
8
necator americanus
8
americanus na-gst-1
8
na-gst-1 substrate
8
substrate glutathione
8
glutathione solved
8
na-gst-1
7
complex
5

Similar Publications

Glutathione S-transferase 1 from Necator americanus (Na-GST-1) is a vaccine candidate for hookworm infection that has a high affinity for heme and metal porphyrins. As part of attempts to clarify the mechanism of heme detoxification by hookworm GSTs, co-crystallization and soaking studies of Na-GST-1 with the heme-like molecules protoporphyrin IX disodium salt, hematin and zinc protoporphyrin were undertaken. While these studies did not yield the structure of the complex of Na-GST-1 with any of these molecules, co-crystallization experiments resulted in the first structures of the complex of Na-GST-1 with the substrate glutathione.

View Article and Find Full Text PDF

Background: Human hookworm infection is a major cause of anemia and malnutrition of adults and children in the developing world. As part of on-going efforts to control hookworm infection, The Human Hookworm Vaccine Initiative has identified candidate vaccine antigens from the infective L3 larval stages and adult stages of the parasite. Adult stage antigens include the cytosolic glutathione-S-transferases (GSTs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!