The role of pericyte detachment in vascular rarefaction.

J Vasc Res

Division of Vascular and Endovascular Surgery, Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany.

Published: December 2014

Background: Pericytes surround endothelial cells at the perivascular interface. Signaling between endothelial cells and pericytes is crucial for capillary homeostasis, as pericytes stabilize vessels and regulate many microvascular functions. Recently it has been shown that pericytes are able to detach from the vascular wall and contribute to fibrosis by becoming scar-forming myofibroblasts in many organs including the kidney. At the same time, the loss of pericytes within the perivascular compartment results in vulnerable capillaries which are prone to instability, pathological angiogenesis, and, ultimately, rarefaction.

Aims: This review will give an overview of pericyte-endothelial cell interactions, summarize the signaling pathways that have been identified to be involved in pericyte detachment from the vascular wall, and present pathological endothelial responses in the context of disease of the kidney.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4476411PMC
http://dx.doi.org/10.1159/000365149DOI Listing

Publication Analysis

Top Keywords

pericyte detachment
8
detachment vascular
8
endothelial cells
8
vascular wall
8
pericytes
5
role pericyte
4
vascular rarefaction
4
rarefaction background
4
background pericytes
4
pericytes surround
4

Similar Publications

Emerging clinical evidence of a dual role for Ang-2 and VEGF-A blockade with faricimab in retinal diseases.

Graefes Arch Clin Exp Ophthalmol

December 2024

Doheny Eye Institute, University of California, Los Angeles, 150 N. Orange Grove Blvd, Suite 232, Pasadena, CA, USA.

Anti-vascular endothelial growth factor (VEGF) therapies have transformed the treatment of retinal diseases. However, VEGF signaling is only one component of the complex, multifactorial pathophysiology of retinal diseases, and many patients have residual disease activity despite ongoing anti-VEGF treatment. The angiopoietin/tyrosine kinase with immunoglobulin and epidermal growth factor receptor-2 (Ang/Tie2) signaling pathway is critical to endothelial cell homeostasis, survival, integrity, and vascular stability.

View Article and Find Full Text PDF

Retinopathy of prematurity (ROP) is primarily caused by the exposure of preterm infants with underdeveloped blood vessels to high oxygen concentrations. This damages the astrocytes that promote normal vascular development, leading to avascularity, pathological neovascularization, and retinal detachment, and even blindness as the disease progresses. In this study, the aim was to investigate the differences in the characteristics of astrocytes and blood vessels between wild-type (WT) and genetically modified mice overexpressing platelet-derived growth factor subunit A (PDGF-A) in the retina immediately after high oxygen exposure, a protocol in the oxygen-induced retinopathy (OIR) model of ROP.

View Article and Find Full Text PDF

Role of the Pancreatic Islet Microvasculature in Health and Disease.

J Histochem Cytochem

December 2024

Seattle Institute for Biomedical and Clinical Research, and Research Service, Department of Veterans Affairs Puget Sound Health Care System, Seattle, Washington.

The pancreatic islet vasculature comprises microvascular endothelial cells surrounded by mural cells (pericytes). Both cell types support the islet by providing (1) a conduit for delivery and exchange of nutrients and hormones; (2) paracrine signals and extracellular matrix (ECM) components that support islet development, architecture, and endocrine function; and (3) a barrier against inflammation and immune cell infiltration. In type 2 diabetes, the islet vasculature becomes inflamed, showing loss of endothelial cells, detachment, and/or trans-differentiation of pericytes, vessel dilation, and excessive ECM deposition.

View Article and Find Full Text PDF

Pericyte response to ischemic stroke precedes endothelial cell death and blood-brain barrier breakdown.

J Cereb Blood Flow Metab

July 2024

Translational Neurology Group, Department of Clinical Science, Wallenberg Neuroscience Center, Lund University, Lund, Sweden.

Stroke is one of the leading causes of death and disability, yet the cellular response to the ischemic insult is poorly understood limiting therapeutic options. Brain pericytes are crucial for maintaining blood-brain barrier (BBB) integrity and are known to be one of the first responders to ischemic stroke. The exact timeline of cellular events after stroke, however, remains elusive.

View Article and Find Full Text PDF

Sleep loss impairs blood-brain barrier function: Cellular and molecular mechanisms.

Vitam Horm

July 2024

Area of Neurosciences, Department of Biology of Reproduction, Universidad Autónoma Metropolitana, Mexico City, Mexico. Electronic address:

Sleep is a physiological process that preserves the integrity of the neuro-immune-endocrine network to maintain homeostasis. Sleep regulates the production and secretion of hormones, neurotransmitters, cytokines and other inflammatory mediators, both at the central nervous system (CNS) and at the periphery. Sleep promotes the removal of potentially toxic metabolites out of the brain through specialized systems such as the glymphatic system, as well as the expression of specific transporters in the blood-brain barrier.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!