The demand for ever more complex nanostructures in materials and soft matter nanoscience also requires sophisticated characterization tools for reliable visualization and interpretation of internal morphological features. Here, we address both aspects and present synthetic concepts for the compartmentalization of nanoparticle peripheries as well as their in situ tomographic characterization. We first form negatively charged spherical multicompartment micelles from ampholytic triblock terpolymers in aqueous media, followed by interpolyelectrolyte complex (IPEC) formation of the anionic corona with bis-hydrophilic cationic/neutral diblock copolymers. At a 1:1 stoichiometric ratio of anionic and cationic charges, the so-formed IPECs are charge neutral and thus phase separate from solution (water). The high chain density of the ionic grafts provides steric stabilization through the neutral PEO corona of the grafted diblock copolymer and suppresses collapse of the IPEC; instead, the dense grafting results in defined nanodomains oriented perpendicular to the micellar core. We analyze the 3D arrangements of the complex and purely organic compartments, in situ, by means of cryogenic transmission electron microscopy (cryo-TEM) and tomography (cryo-ET). We study the effect of block lengths of the cationic and nonionic block on IPEC morphology, and while 2D cryo-TEM projections suggest similar morphologies, cryo-ET and computational 3D reconstruction reveal otherwise hidden structural features, e.g., planar IPEC brushes emanating from the micellar core.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nn504197yDOI Listing

Publication Analysis

Top Keywords

hidden structural
8
structural features
8
multicompartment micelles
8
cryogenic transmission
8
transmission electron
8
micellar core
8
features multicompartment
4
micelles revealed
4
revealed cryogenic
4
electron tomography
4

Similar Publications

Metallic Bonding in Close-Packed Structures: Structural Frustration from a Hidden Gauge Symmetry.

Phys Rev Lett

December 2024

Department of Physics, Brock University, St. Catharines, Ontario L2S 3A1, Canada.

Based on its simple valence electron configuration, we may expect lithium to have straightforward physical properties that are easily explained. However, solid lithium, when cooled below 77 K, develops a complex structure that has been debated for decades. A close parallel is found in sodium below 36 K where the crystal structure still remains unresolved.

View Article and Find Full Text PDF

Novel patterns in discrete Ikeda map: Quint points and complex non-quantum chirality.

Chaos

January 2025

School of Mechanical and Power Engineering, Zhengzhou University, Science Road 100, 450001 Zhengzhou, China.

In this paper, the complex and dynamically rich distribution of stable phases in the well-known discrete Ikeda map is studied in detail. The unfolding patterns of these stable phases are described through three complementary stability diagrams: the Lyapunov stability diagram, the isoperiod stability diagram, and the isospike stability diagram. The adding-doubling complexification cascade and fascinating non-quantum chiral pairs are discovered, marking the first report of such structures in discrete mapping.

View Article and Find Full Text PDF

The Empathy Quandary in Postgraduate Medical Training.

Int J Appl Basic Med Res

November 2024

Department of Medical Education, Nova Southeastern University, Dr. Kiran C. Patel College of Allopathic Medicine, Florida, United States.

Background: Empathy stands as a cornerstone of humanistic qualities and is essential in healthcare for understanding and alleviating emotional suffering. Despite its necessity, formal empathy training remains elusive in postgraduate medical education across the globe, contributing to decline of humanistic practice among trainees. This study aims to assess and establish the need for empathy training by evaluating the perspectives of postgraduate trainees and faculty.

View Article and Find Full Text PDF

Steganography is used to hide sensitive types of data including images, audio, text, and videos in an invisible way so that no one can detect it. Image-based steganography is a technique that uses images as a cover media for hiding and transmitting sensitive information over the internet. However, image-based steganography is a challenging task due to transparency, security, computational efficiency, tamper protection, payload, etc.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!