In Vitro and In Vivo Performance of Different Sized Spray-Dried Crystalline Itraconazole.

J Pharm Sci

University of Connecticut, School of Pharmacy, Department of Pharmaceutics, 69 North Eagleville Road, Unit 3092, Storrs, Connecticut, 06269.

Published: September 2015

The objectives of the present study were to formulate and optimize different sized liquid and solid nanocrystalline formulations and evaluate their in vitro and in vivo performance to determine the effect of particle size on the oral bioavailability of solid nanocrystalline formulations. Nanotechnology is a promising approach to solve the problem of poor oral bioavailability of Biopharmaceutical Classification System class II/IV compounds. However, the highly exposed surface area of nanocrystals and hence their high Gibb's free energy poses a great challenge to nanocrystalline suspension stabilization. In this study, stabilization was achieved by preparing spray-dried nanocrystalline powders. A design of experiment approach was utilized to optimize the nanocrystalline suspensions/powders. On the basis of drug solubility studies, polyvinylpyrrolidone 40 KDa and sodium lauryl sulfate were selected for wet milling processing. Mannitol was chosen as the auxiliary excipient for spray-drying processing. In vitro dissolution utilizing a United States Pharmacopeia (USP) apparatus II showed superior release profiles for both liquid and nanocrystalline powder formulations compared with coarse-sized and unmilled formulations. Significantly, the oral bioavailability of nanocrystalline formulations with particle size of 280 nm was more than 20 times that of the unmilled formulation, whereas the nanocrystalline formulation with particle size of 750 nm showed only a 2.8 times increase in bioavailability compared with the unmilled formulation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jps.24155DOI Listing

Publication Analysis

Top Keywords

nanocrystalline formulations
12
particle size
12
oral bioavailability
12
vitro vivo
8
vivo performance
8
nanocrystalline
8
solid nanocrystalline
8
unmilled formulation
8
formulations
5
performance sized
4

Similar Publications

Pharmaceutical nanosuspensions, also called nanocrystals, are heterogeneous mainly aqueous dispersions of insoluble drug particles stabilised by surfactants and/or polymers. Nanosuspensions as liquid formulations suffer from instability. Solidification of nanosuspensions to solid dosage forms is a way to combine the advantages of nanocrystals with the advantages of the solid state.

View Article and Find Full Text PDF

Design of Nanocrystalline Suspension of Dutasteride for Intramuscular Prolonged Delivery.

Nanomaterials (Basel)

November 2024

College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan 31116, Chungnam, Republic of Korea.

The aim of the study is to formulate an injectable nanocrystalline suspension (NS) of dutasteride (DTS), a hydrophobic 5α-reductase inhibitor used to treat benign prostatic hyperplasia and scalp hair loss, for parenteral long-acting delivery. A DTS-loaded NS (DTS-NS, 40 mg/mL DTS) was prepared using a lab-scale bead-milling technique. The optimized DTS-NS prepared using Tween 80 (0.

View Article and Find Full Text PDF

In this study, titanium oxide TiO nanoparticles were produced using the sol-gel approach of green synthesis with pectin as the reducing agent. The synthetized TiO nanoparticles with pectin were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), visible light absorption (UV-Vis) and the BET method. The structure and morphology of the TiO powder were described with SEM, revealing uniform monodisperse grains with a distribution of 80% regarding sizes < 250 nm; the resulting crystal phase of synthetized TiO was identified as an anatase and rutile phase with a crystallinity size estimated between 27 and 40 nm.

View Article and Find Full Text PDF

Stability Study of Synthetic Diamond Using a Thermally Controlled Biological Environment: Application towards Long-Lasting Neural Prostheses.

Sensors (Basel)

June 2024

ESYCOM Laboratory for Electronics, Communication and Microsystems, CNRS UMR 9007, F-77454 Marne-la-Vallée, France.

This paper demonstrates, for the first time, the stability of synthetic diamond as a passive layer within neural implants. Leveraging the exceptional biocompatibility of intrinsic nanocrystalline diamond, a comprehensive review of material aging analysis in the context of in-vivo implants is provided. This work is based on electric impedance monitoring through the formulation of an analytical model that scrutinizes essential parameters such as the deposited metal resistivity, insulation between conductors, changes in electrode geometry, and leakage currents.

View Article and Find Full Text PDF

Sodium fusidate loaded apatitic calcium phosphates: Adsorption behavior, release kinetics, antibacterial efficacy, and cytotoxicity assessment.

Int J Pharm

July 2024

CIRIMAT, Toulouse INP, Université Toulouse 3 Paul Sabatier, CNRS, Université de Toulouse, ENSIACET, 4 Allée Emile Monso, 31030 Toulouse Cedex 4, France.

The present work reports the adsorption, release, antibacterial properties, and in vitro cytotoxicity of sodium fusidate (SF) associated with a carbonated calcium phosphate bone cement. The adsorption study of SF on cement powder compared to stoichiometric hydroxyapatite and nanocrystalline carbonated apatite was investigated to understand the interaction between this antibiotic and the calcium phosphate phases involved in the cement formulation and setting reaction. The adsorption data revealed a fast kinetic process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!