A comparison of biochars from lignin, cellulose and wood as the sorbent to an aromatic pollutant.

J Hazard Mater

College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, Zhejiang 312000, PR China.

Published: September 2014

Biochars' performance as the sorbent to pollutants is dependent on their compositions and surface characteristics, which are then related to the feedstock used for biochar preparation. The objective of this work is to probe the feedstock's influence on biochar's sorption property through a comparative study on biochars from lignin, cellulose and wood prepared at 400°C and 600°C, respectively. Elemental and spectral analyses demonstrated that the wood biochar had a composition and carbonization degree close to the cellulose biochar but much different from the lignin biochar prepared at the same temperature, suggesting that lignin is not dominant to properties of plant-derived biochars. The lignin biochar showed a sorption capacity comparable to both cellulose and wood biochars as the sorbent to nitrobenzene, with a higher partition contribution to the total sorption due to the lower carbonization of lignin. In general, the lignin biochar is a good candidate of sorbent to aromatic pollutants, and is advantageous over the other two species with its efficient carbon utilization.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2014.08.033DOI Listing

Publication Analysis

Top Keywords

biochars lignin
12
cellulose wood
12
lignin biochar
12
lignin cellulose
8
sorbent aromatic
8
lignin
7
biochar
6
comparison biochars
4
cellulose
4
wood
4

Similar Publications

Analysis of the Pyrolysis Kinetics, Reaction Mechanisms, and By-Products of Rice Husk and Rice Straw via TG-FTIR and Py-GC/MS.

Molecules

December 2024

Biochar Engineering & Technology Research Center of Liaoning Province, College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China.

Article Synopsis
  • The study analyzed the pyrolysis behaviors of rice husk (RH) and rice straw (RS) using various scientific techniques, revealing distinct stages of pyrolysis for each organic material.
  • The activation energies for the different components (pseudo-hemicellulose, pseudo-cellulose, and pseudo-lignin) were calculated, showing varying levels of energy requirement between RH and RS.
  • RS demonstrated better pyrolysis performance and produced a greater variety of valuable by-products compared to RH, indicating potential for utilization in agriculture, bioenergy, and chemical sectors.
View Article and Find Full Text PDF

Herein, a biochar-supported zero-valent iron (ZVI) nanosheet catalyst (Fe@BC) for the activation of persulfate to degrade ciprofloxacin (CIP) was prepared using industrial kraft lignin and Fenton sludge as carbon and iron sources, respectively. Fe@BC showed considerably better CIP degradation efficiency (96.9% at 20 mg L) than traditional catalysts.

View Article and Find Full Text PDF

New insight into enhanced permanganate oxidation by lignocellulose-derived biochar: The overlooked role of persistent free radicals.

Water Res

December 2024

The Ministry of Education Key Laboratory of Northwest Water Resource, Environment and Ecology, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China. Electronic address:

Permanganate (Mn(VII)) is a traditional reagent used for water purification, but it is mild to deal with refractory organic contaminants of emerging concern. There is great interest in combination with effective and low-cost biochar to improve reaction kinetics of Mn(VII). Until recently, it still unclear how biomass composition and carbon structure of biochar influence the Mn(VII) oxidation performance.

View Article and Find Full Text PDF

An efficient fungi-biochar-based system for advancing sustainable management of combined pollution.

Environ Pollut

January 2025

Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, PR China. Electronic address:

Heavy metal (HM) contamination poses significant global environmental threats, impacting ecosystems, public health, and sustainable development. Fungi, as eco-friendly alternatives to chemical treatments, have the potential to reduce HM bioavailability in contaminated soils while promoting plant growth. However, current fungal remediation methods face limitations in efficiency, long-term effectiveness, and the ability to address combined contamination, particularly with naturally occurring strains.

View Article and Find Full Text PDF

Behaviors of bio-modified calcium-based sorbents for simultaneous CO/NO removal: Correlation of the characteristics of biomass, modified Ca-sorbent and reactivity.

J Environ Manage

January 2025

Key Laboratory of Energy Thermal Conversion and Control, Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, PR China.

Article Synopsis
  • Simultaneous removal of CO and NO from flue gas is important for reducing atmospheric pollutants and carbon emissions.
  • An optimized calcium oxide (CaO) system is proposed using bio-modified calcium-based pellets, where biomass pyrolysis enhances efficiency.
  • The study finds that different biomass types impact pellet characteristics, with cellulose improving pellet structure for better CO/NO removal, while lignin increases biochar production, affecting capture performance based on pore structure and biochar content.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!